These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 27342258)

  • 1. Eccentricity effects in vision and attention.
    Staugaard CF; Petersen A; Vangkilde S
    Neuropsychologia; 2016 Nov; 92():69-78. PubMed ID: 27342258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-monotonic changes in performance with eccentricity modeled by multiple eccentricity-dependent limitations.
    Poirier FJ; Gurnsey R
    Vision Res; 2005 Aug; 45(18):2436-48. PubMed ID: 15979465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairing the useful field of view in natural scenes: Tunnel vision versus general interference.
    Ringer RV; Throneburg Z; Johnson AP; Kramer AF; Loschky LC
    J Vis; 2016; 16(2):7. PubMed ID: 27050950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.
    Bressler DW; Fortenbaugh FC; Robertson LC; Silver MA
    Vision Res; 2013 Jun; 85():104-12. PubMed ID: 23562388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed of visual processing increases with eccentricity.
    Carrasco M; McElree B; Denisova K; Giordano AM
    Nat Neurosci; 2003 Jul; 6(7):699-700. PubMed ID: 12819786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.
    Bao Y; Lei Q; Fang Y; Tong Y; Schill K; Pöppel E; Strasburger H
    Exp Psychol; 2013; 60(6):425-31. PubMed ID: 23820946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why are there eccentricity effects in visual search? Visual and attentional hypotheses.
    Wolfe JM; O'Neill P; Bennett SC
    Percept Psychophys; 1998 Jan; 60(1):140-56. PubMed ID: 9503918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the impact of blur under mobile attentional orientation using a vision simulator.
    De Lestrange-Anginieur E; Kee CS
    PLoS One; 2020; 15(6):e0234380. PubMed ID: 32542032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objections against the view of visual extinction as an attentional disengagement deficit: the interaction between spatial position and temporal modulation.
    de Haan B; Karnath HO
    Cortex; 2012 Sep; 48(8):972-9. PubMed ID: 21513929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic attentional modulation of vision across space and time after right hemisphere stroke and in ageing.
    Russell C; Malhotra P; Deidda C; Husain M
    Cortex; 2013; 49(7):1874-83. PubMed ID: 23245427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual impairment at large eccentricity in participants treated by vigabatrin: visual, attentional or recognition deficit?
    Naili F; Boucart M; Derambure P; Arndt C
    Epilepsy Res; 2009 Dec; 87(2-3):213-22. PubMed ID: 19800764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceived duration decreases with increasing eccentricity.
    Kliegl KM; Huckauf A
    Acta Psychol (Amst); 2014 Jul; 150():136-45. PubMed ID: 24880978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of a peripheral patch: the role of blur and spatial frequency.
    Levi DM; Tripathy SP
    Vision Res; 1996 Dec; 36(23):3785-803. PubMed ID: 8994580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Components of bottom-up gaze allocation in natural images.
    Peters RJ; Iyer A; Itti L; Koch C
    Vision Res; 2005 Aug; 45(18):2397-416. PubMed ID: 15935435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional allocation and the pan-field color illusion.
    Okubo L; Yokosawa K
    J Vis; 2023 Mar; 23(3):13. PubMed ID: 36951851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of attentional load on early visual processing depend on stimulus timing.
    Rauss K; Pourtois G; Vuilleumier P; Schwartz S
    Hum Brain Mapp; 2012 Jan; 33(1):63-74. PubMed ID: 21438076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of central and peripheral vision in the primate cerebral cortex: Insights from studies of the marmoset brain.
    Yu HH; Chaplin TA; Rosa MG
    Neurosci Res; 2015 Apr; 93():47-61. PubMed ID: 25242578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological correlates of target eccentricity in texture segmentation.
    Schaffer S; Schubö A; Meinecke C
    Int J Psychophysiol; 2011 Jun; 80(3):198-209. PubMed ID: 21419177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.