BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 27343053)

  • 21. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.
    Kelkar DS; Provost E; Chaerkady R; Muthusamy B; Manda SS; Subbannayya T; Selvan LD; Wang CH; Datta KK; Woo S; Dwivedi SB; Renuse S; Getnet D; Huang TC; Kim MS; Pinto SM; Mitchell CJ; Madugundu AK; Kumar P; Sharma J; Advani J; Dey G; Balakrishnan L; Syed N; Nanjappa V; Subbannayya Y; Goel R; Prasad TS; Bafna V; Sirdeshmukh R; Gowda H; Wang C; Leach SD; Pandey A
    Mol Cell Proteomics; 2014 Nov; 13(11):3184-98. PubMed ID: 25060758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer.
    Judes G; Rifaï K; Daures M; Dubois L; Bignon YJ; Penault-Llorca F; Bernard-Gallon D
    Cancer Lett; 2016 Nov; 382(1):77-85. PubMed ID: 26965997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes.
    Lopes KP; Campos-Laborie FJ; Vialle RA; Ortega JM; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):725. PubMed ID: 27801289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor.
    Olexiouk V; Menschaert G
    Adv Exp Med Biol; 2016; 926():49-64. PubMed ID: 27686805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia.
    Borgmann-Winter KE; Wang K; Bandyopadhyay S; Torshizi AD; Blair IA; Hahn CG
    Schizophr Res; 2020 Mar; 217():148-161. PubMed ID: 31416743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.
    Emery SJ; Lacey E; Haynes PA
    Mol Biochem Parasitol; 2016 Aug; 208(2):96-112. PubMed ID: 27449313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bottom up proteomics data analysis strategies to explore protein modifications and genomic variants.
    Carvalho AS; Penque D; Matthiesen R
    Proteomics; 2015 Jun; 15(11):1789-92. PubMed ID: 25684358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy.
    Cesnik AJ; Shortreed MR; Sheynkman GM; Frey BL; Smith LM
    J Proteome Res; 2016 Mar; 15(3):800-8. PubMed ID: 26704769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803.
    Huang S; Chen L; Te R; Qiao J; Wang J; Zhang W
    Mol Biosyst; 2013 Oct; 9(10):2565-74. PubMed ID: 23942477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative proteomics and transcriptomics identify novel invasive-related biomarkers of non-functioning pituitary adenomas.
    Yu SY; Hong LC; Feng J; Wu YT; Zhang YZ
    Tumour Biol; 2016 Jul; 37(7):8923-30. PubMed ID: 26753958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking transcriptomics and proteomics in spermatogenesis.
    Chalmel F; Rolland AD
    Reproduction; 2015 Nov; 150(5):R149-57. PubMed ID: 26416010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-translational modifications and their applications in eye research (Review).
    Chen BJ; Lam TC; Liu LQ; To CH
    Mol Med Rep; 2017 Jun; 15(6):3923-3935. PubMed ID: 28487982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteogenomic Tools and Approaches to Explore Protein Coding Landscapes of Eukaryotic Genomes.
    Kumar D; Dash D
    Adv Exp Med Biol; 2016; 926():1-10. PubMed ID: 27686802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative Exploratory Analysis of Two or More Genomic Datasets.
    Meng C; Culhane A
    Methods Mol Biol; 2016; 1418():19-38. PubMed ID: 27008008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic and proteomic analyses provide new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage.
    Zhang CW; Wei YP; Xiao D; Gao LW; Lyu SW; Hou XL; Bouuema G
    J Proteomics; 2016 Jul; 144():1-10. PubMed ID: 27216644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Workability of mRNA Sequencing for Predicting Protein Abundance.
    Ponomarenko EA; Krasnov GS; Kiseleva OI; Kryukova PA; Arzumanian VA; Dolgalev GV; Ilgisonis EV; Lisitsa AV; Poverennaya EV
    Genes (Basel); 2023 Nov; 14(11):. PubMed ID: 38003008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing and annotating the genome using RNA-seq data.
    Chen G; Shi T; Shi L
    Sci China Life Sci; 2017 Feb; 60(2):116-125. PubMed ID: 27294835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomics: bases for protein complexity understanding.
    Rotilio D; Della Corte A; D'Imperio M; Coletta W; Marcone S; Silvestri C; Giordano L; Di Michele M; Donati MB
    Thromb Res; 2012 Mar; 129(3):257-62. PubMed ID: 22283976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration.
    Crappé J; Ndah E; Koch A; Steyaert S; Gawron D; De Keulenaer S; De Meester E; De Meyer T; Van Criekinge W; Van Damme P; Menschaert G
    Nucleic Acids Res; 2015 Mar; 43(5):e29. PubMed ID: 25510491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.