These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27343092)

  • 1. Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.
    Storz JF; Cheviron ZA
    Adv Exp Med Biol; 2016; 903():113-28. PubMed ID: 27343092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice.
    Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA
    PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological Genomics of Adaptation to High-Altitude Hypoxia.
    Storz JF; Cheviron ZA
    Annu Rev Anim Biosci; 2021 Feb; 9():149-171. PubMed ID: 33228375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria).
    Bonin A; Taberlet P; Miaud C; Pompanon F
    Mol Biol Evol; 2006 Apr; 23(4):773-83. PubMed ID: 16396915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High altitude adaptation: genetic perspectives.
    Stobdan T; Karar J; Pasha MA
    High Alt Med Biol; 2008; 9(2):140-7. PubMed ID: 18578645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of human origin and evolution: high-altitude adaptations.
    Bigham AW
    Curr Opin Genet Dev; 2016 Dec; 41():8-13. PubMed ID: 27501156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig.
    Jia C; Kong X; Koltes JE; Gou X; Yang S; Yan D; Lu S; Wei Z
    PLoS One; 2016; 11(12):e0168161. PubMed ID: 27936142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance.
    Wearing OH; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110636. PubMed ID: 34119652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
    Storz JF; Runck AM; Sabatino SJ; Kelly JK; Ferrand N; Moriyama H; Weber RE; Fago A
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14450-5. PubMed ID: 19667207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
    Velotta JP; Ivy CM; Wolf CJ; Scott GR; Cheviron ZA
    Evolution; 2018 Dec; 72(12):2712-2727. PubMed ID: 30318588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology.
    Storz JF
    Mol Biol Evol; 2021 Jun; 38(7):2677-2691. PubMed ID: 33751123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding the genes underlying adaptation to hypoxia using genomic scans for genetic adaptation and admixture mapping.
    Shriver MD; Mei R; Bigham A; Mao X; Brutsaert TD; Parra EJ; Moore LG
    Adv Exp Med Biol; 2006; 588():89-100. PubMed ID: 17089882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments.
    Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML
    Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Genetic Adaptation to High Altitude: Evidence from the Andes.
    Julian CG; Moore LG
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice.
    Schweizer RM; Ivy CM; Natarajan C; Scott GR; Storz JF; Cheviron ZA
    Mol Ecol; 2023 Jul; 32(13):3483-3496. PubMed ID: 37073620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.