BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27343092)

  • 1. Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation.
    Storz JF; Cheviron ZA
    Adv Exp Med Biol; 2016; 903():113-28. PubMed ID: 27343092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice.
    Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA
    PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological Genomics of Adaptation to High-Altitude Hypoxia.
    Storz JF; Cheviron ZA
    Annu Rev Anim Biosci; 2021 Feb; 9():149-171. PubMed ID: 33228375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria).
    Bonin A; Taberlet P; Miaud C; Pompanon F
    Mol Biol Evol; 2006 Apr; 23(4):773-83. PubMed ID: 16396915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High altitude adaptation: genetic perspectives.
    Stobdan T; Karar J; Pasha MA
    High Alt Med Biol; 2008; 9(2):140-7. PubMed ID: 18578645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of human origin and evolution: high-altitude adaptations.
    Bigham AW
    Curr Opin Genet Dev; 2016 Dec; 41():8-13. PubMed ID: 27501156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig.
    Jia C; Kong X; Koltes JE; Gou X; Yang S; Yan D; Lu S; Wei Z
    PLoS One; 2016; 11(12):e0168161. PubMed ID: 27936142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance.
    Wearing OH; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110636. PubMed ID: 34119652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
    Storz JF; Runck AM; Sabatino SJ; Kelly JK; Ferrand N; Moriyama H; Weber RE; Fago A
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14450-5. PubMed ID: 19667207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice.
    Velotta JP; Ivy CM; Wolf CJ; Scott GR; Cheviron ZA
    Evolution; 2018 Dec; 72(12):2712-2727. PubMed ID: 30318588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology.
    Storz JF
    Mol Biol Evol; 2021 Jun; 38(7):2677-2691. PubMed ID: 33751123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding the genes underlying adaptation to hypoxia using genomic scans for genetic adaptation and admixture mapping.
    Shriver MD; Mei R; Bigham A; Mao X; Brutsaert TD; Parra EJ; Moore LG
    Adv Exp Med Biol; 2006; 588():89-100. PubMed ID: 17089882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments.
    Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML
    Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Genetic Adaptation to High Altitude: Evidence from the Andes.
    Julian CG; Moore LG
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice.
    Schweizer RM; Ivy CM; Natarajan C; Scott GR; Storz JF; Cheviron ZA
    Mol Ecol; 2023 Jul; 32(13):3483-3496. PubMed ID: 37073620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.