These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 27343383)
41. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. Chen W; Liu C; Xiao Y; Zhang D; Zhang Y; Li X; Tabashnik BE; Wu K PLoS One; 2015; 10(4):e0126288. PubMed ID: 25885820 [TBL] [Abstract][Full Text] [Related]
42. Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China. Li G; Feng H; Gao Y; Wyckhuys KA; Wu K Environ Entomol; 2010 Oct; 39(5):1698-704. PubMed ID: 22546469 [TBL] [Abstract][Full Text] [Related]
43. Synergism of Cry1 Toxins by a Fusion Protein Derived from a Cadherin Fragment and an Antibody Peptide. Gao M; Zhong J; Lu L; Li Y; Zhang Z J Agric Food Chem; 2024 Sep; 72(36):19689-19698. PubMed ID: 39189874 [TBL] [Abstract][Full Text] [Related]
45. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Wei W; Pan S; Ma Y; Xiao Y; Yang Y; He S; Bravo A; Soberón M; Liu K Insect Biochem Mol Biol; 2020 Mar; 118():103306. PubMed ID: 31843687 [TBL] [Abstract][Full Text] [Related]
46. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella. Park Y; Herrero S; Kim Y Insect Mol Biol; 2015 Dec; 24(6):624-33. PubMed ID: 26331576 [TBL] [Abstract][Full Text] [Related]
47. Monitoring cotton bollworm resistance to Cry1Ac in two counties of northern China during 2009-2013. An J; Gao Y; Lei C; Gould F; Wu K Pest Manag Sci; 2015 Mar; 71(3):377-82. PubMed ID: 24753356 [TBL] [Abstract][Full Text] [Related]
48. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. Chen Z; He F; Xiao Y; Liu C; Li J; Yang Y; Ai H; Peng J; Hong H; Liu K Insect Biochem Mol Biol; 2015 Apr; 59():1-17. PubMed ID: 25662100 [TBL] [Abstract][Full Text] [Related]
49. Map-based cloning and functional analysis revealed ABCC2 is responsible for Cry1Ac toxin resistance in Bombyx mori. Wang X; Yi XL; Hou CX; Wang XY; Sun X; Zhang ZJ; Qin S; Li MW Arch Insect Biochem Physiol; 2022 Jun; 110(2):e21886. PubMed ID: 35307854 [TBL] [Abstract][Full Text] [Related]
50. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
51. HearNPV susceptibility in Helicoverpa armigera and Helicoverpa punctigera strains resistant to Bt toxins Cry1Ac, Cry2Ab, and Vip3Aa. Windus LCE; Jones AM; Downes S; Walsh T; Knight K; Kinkema M J Invertebr Pathol; 2021 Jul; 183():107598. PubMed ID: 33957131 [TBL] [Abstract][Full Text] [Related]
52. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Akhurst RJ; James W; Bird LJ; Beard C J Econ Entomol; 2003 Aug; 96(4):1290-9. PubMed ID: 14503603 [TBL] [Abstract][Full Text] [Related]
53. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Liu C; Xiao Y; Li X; Oppert B; Tabashnik BE; Wu K Sci Rep; 2014 Nov; 4():7219. PubMed ID: 25427690 [TBL] [Abstract][Full Text] [Related]
54. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. Wang J; Ma H; Zhao S; Huang J; Yang Y; Tabashnik BE; Wu Y PLoS Pathog; 2020 Mar; 16(3):e1008427. PubMed ID: 32191775 [TBL] [Abstract][Full Text] [Related]
55. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
56. Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera. Liu C; Gao Y; Ning C; Wu K; Oppert B; Guo Y J Insect Physiol; 2010 Jul; 56(7):718-24. PubMed ID: 20035762 [TBL] [Abstract][Full Text] [Related]
57. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Bretschneider A; Heckel DG; Pauchet Y Insect Biochem Mol Biol; 2016 Sep; 76():109-117. PubMed ID: 27456115 [TBL] [Abstract][Full Text] [Related]
58. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Fang S; Wang L; Guo W; Zhang X; Peng D; Luo C; Yu Z; Sun M Appl Environ Microbiol; 2009 Aug; 75(16):5237-43. PubMed ID: 19542344 [TBL] [Abstract][Full Text] [Related]
59. Baseline Susceptibility of Field Populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa Toxin and Lack of Cross-Resistance between Vip3Aa and Cry Toxins. Wei Y; Wu S; Yang Y; Wu Y Toxins (Basel); 2017 Apr; 9(4):. PubMed ID: 28379206 [TBL] [Abstract][Full Text] [Related]
60. Mechanisms of feeding cessation in Helicoverpa armigera larvae exposed to Bacillus thuringiensis Cry1Ac toxin. Li K; Yu S; Yang Y; He YZ; Wu Y Pestic Biochem Physiol; 2023 Sep; 195():105565. PubMed ID: 37666620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]