These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1867 related articles for article (PubMed ID: 27343697)
1. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells. Zhang F; Wang X; Xu X; Li M; Zhou J; Wang W Eur J Pharm Sci; 2016 Sep; 92():11-21. PubMed ID: 27343697 [TBL] [Abstract][Full Text] [Related]
2. Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy. Wang R; Zhao Z; Han Y; Hu S; Opoku-Damoah Y; Zhou J; Yin L; Ding Y Mol Pharm; 2017 Sep; 14(9):2999-3012. PubMed ID: 28753317 [TBL] [Abstract][Full Text] [Related]
3. Lysosome-Independent Intracellular Drug/Gene Codelivery by Lipoprotein-Derived Nanovector for Synergistic Apoptosis-Inducing Cancer-Targeted Therapy. Wang W; Chen K; Su Y; Zhang J; Li M; Zhou J Biomacromolecules; 2018 Feb; 19(2):438-448. PubMed ID: 29334216 [TBL] [Abstract][Full Text] [Related]
4. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery. Wang R; Gu X; Zhou J; Shen L; Yin L; Hua P; Ding Y J Control Release; 2016 Aug; 235():134-146. PubMed ID: 27238442 [TBL] [Abstract][Full Text] [Related]
5. Folic Acid-Modified Nanoerythrocyte for Codelivery of Paclitaxel and Tariquidar to Overcome Breast Cancer Multidrug Resistance. Zhong P; Chen X; Guo R; Chen X; Chen Z; Wei C; Li Y; Wang W; Zhou Y; Qin L Mol Pharm; 2020 Apr; 17(4):1114-1126. PubMed ID: 32176509 [TBL] [Abstract][Full Text] [Related]
6. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Meng L; Xia X; Yang Y; Ye J; Dong W; Ma P; Jin Y; Liu Y Int J Pharm; 2016 Nov; 513(1-2):8-16. PubMed ID: 27596118 [TBL] [Abstract][Full Text] [Related]
7. Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles. Baek JS; Cho CW Int J Pharm; 2015 Jan; 478(2):617-24. PubMed ID: 25510604 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. Bai F; Wang C; Lu Q; Zhao M; Ban FQ; Yu DH; Guan YY; Luan X; Liu YR; Chen HZ; Fang C Biomaterials; 2013 Aug; 34(26):6163-74. PubMed ID: 23706689 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Jia L; Li Z; Shen J; Zheng D; Tian X; Guo H; Chang P Int J Pharm; 2015 Jul; 489(1-2):318-30. PubMed ID: 25956050 [TBL] [Abstract][Full Text] [Related]
11. Systematic evaluation of multifunctional paclitaxel-loaded polymeric mixed micelles as a potential anticancer remedy to overcome multidrug resistance. Zhang J; Zhao X; Chen Q; Yin X; Xin X; Li K; Qiao M; Hu H; Chen D; Zhao X Acta Biomater; 2017 Mar; 50():381-395. PubMed ID: 27956367 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. McConathy WJ; Nair MP; Paranjape S; Mooberry L; Lacko AG Anticancer Drugs; 2008 Feb; 19(2):183-8. PubMed ID: 18176115 [TBL] [Abstract][Full Text] [Related]
13. Self-assembly of biotinylated poly(ethylene glycol)-poly(curcumin) for paclitaxel delivery. Hu L; Li M; Zhang Z; Shen Y; Guo S Int J Pharm; 2018 Dec; 553(1-2):510-521. PubMed ID: 30308274 [TBL] [Abstract][Full Text] [Related]
14. Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Liu Y; Zhou C; Wei S; Yang T; Lan Y; Cao A; Yang J; Hou Y Colloids Surf B Biointerfaces; 2018 Oct; 170():330-340. PubMed ID: 29936386 [TBL] [Abstract][Full Text] [Related]
15. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. Hu H; Lin Z; He B; Dai W; Wang X; Wang J; Zhang X; Zhang H; Zhang Q J Control Release; 2015 Dec; 220(Pt A):189-200. PubMed ID: 26474677 [TBL] [Abstract][Full Text] [Related]
16. pH-Sensitive Biocompatible Nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for Anticancer Drug Delivery in Solid Tumors of Syngeneic Mice. Dalela M; Shrivastav TG; Kharbanda S; Singh H ACS Appl Mater Interfaces; 2015 Dec; 7(48):26530-48. PubMed ID: 26528585 [TBL] [Abstract][Full Text] [Related]
17. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
18. Tumor targeting effects of a novel modified paclitaxel-loaded discoidal mimic high density lipoproteins. Wang J; Jia J; Liu J; He H; Zhang W; Li Z Drug Deliv; 2013 Nov; 20(8):356-63. PubMed ID: 24079327 [TBL] [Abstract][Full Text] [Related]
19. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Zhu Y; Wang X; Chen J; Zhang J; Meng F; Deng C; Cheng R; Feijen J; Zhong Z J Control Release; 2016 Dec; 244(Pt B):229-239. PubMed ID: 27568289 [TBL] [Abstract][Full Text] [Related]
20. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Rui M; Xin Y; Li R; Ge Y; Feng C; Xu X Mol Pharm; 2017 Jan; 14(1):107-123. PubMed ID: 27982602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]