BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27343712)

  • 1. Cycling hypoxia: A key feature of the tumor microenvironment.
    Michiels C; Tellier C; Feron O
    Biochim Biophys Acta; 2016 Aug; 1866(1):76-86. PubMed ID: 27343712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cycling hypoxia induces a specific amplified inflammatory phenotype in endothelial cells and enhances tumor-promoting inflammation in vivo.
    Tellier C; Desmet D; Petit L; Finet L; Graux C; Raes M; Feron O; Michiels C
    Neoplasia; 2015 Jan; 17(1):66-78. PubMed ID: 25622900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia.
    Koritzinsky M; Wouters BG
    Semin Radiat Oncol; 2013 Oct; 23(4):252-61. PubMed ID: 24012339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme.
    Hsieh CH; Wu CP; Lee HT; Liang JA; Yu CY; Lin YJ
    Free Radic Biol Med; 2012 Aug; 53(4):649-58. PubMed ID: 22713363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression.
    Cosse JP; Michiels C
    Anticancer Agents Med Chem; 2008 Oct; 8(7):790-7. PubMed ID: 18855580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cyclooxygenase-2 as a major actor of the transcriptomic adaptation of endothelial and tumor cells to cyclic hypoxia: effect on angiogenesis and metastases.
    Daneau G; Boidot R; Martinive P; Feron O
    Clin Cancer Res; 2010 Jan; 16(2):410-9. PubMed ID: 20068092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme.
    Chen WL; Wang CC; Lin YJ; Wu CP; Hsieh CH
    J Transl Med; 2015 Dec; 13():389. PubMed ID: 26711814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The close interaction between hypoxia-related proteins and metastasis in pancarcinomas.
    López-Cortés A; Prathap L; Ortiz-Prado E; Kyriakidis NC; León Cáceres Á; Armendáriz-Castillo I; Vera-Guapi A; Yumiceba V; Simbaña-Rivera K; Echeverría-Garcés G; García-Cárdenas JM; Pérez-Villa A; Guevara-Ramírez P; Abad-Sojos A; Bautista J; Puig San Andrés L; Varela N; Guerrero S
    Sci Rep; 2022 Jun; 12(1):11100. PubMed ID: 35773405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor and its microenvironment: a synergistic interplay.
    Catalano V; Turdo A; Di Franco S; Dieli F; Todaro M; Stassi G
    Semin Cancer Biol; 2013 Dec; 23(6 Pt B):522-32. PubMed ID: 24012661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis.
    Joshi S; Singh AR; Zulcic M; Durden DL
    Mol Cancer Res; 2014 Oct; 12(10):1520-31. PubMed ID: 25103499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.
    DelNero P; Lane M; Verbridge SS; Kwee B; Kermani P; Hempstead B; Stroock A; Fischbach C
    Biomaterials; 2015 Jul; 55():110-8. PubMed ID: 25934456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment.
    Scanlon SE; Glazer PM
    DNA Repair (Amst); 2015 Aug; 32():180-189. PubMed ID: 25956861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-inducible factors as key regulators of tumor inflammation.
    Mamlouk S; Wielockx B
    Int J Cancer; 2013 Jun; 132(12):2721-9. PubMed ID: 23055435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment.
    Lisanti MP; Martinez-Outschoorn UE; Chiavarina B; Pavlides S; Whitaker-Menezes D; Tsirigos A; Witkiewicz A; Lin Z; Balliet R; Howell A; Sotgia F
    Cancer Biol Ther; 2010 Sep; 10(6):537-42. PubMed ID: 20861671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment.
    Costa A; Scholer-Dahirel A; Mechta-Grigoriou F
    Semin Cancer Biol; 2014 Apr; 25():23-32. PubMed ID: 24406211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors.
    Indraccolo S
    Adv Exp Med Biol; 2013; 734():37-52. PubMed ID: 23143974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Vascular perfusion as the origin of neoplasm resistance to radio- and chemotherapy].
    Martinive P; Coucke PA
    Rev Med Liege; 2010 Mar; 65(3):133-9. PubMed ID: 20411817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular pathways: emerging pathways mediating growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment.
    Kuonen F; Secondini C; Rüegg C
    Clin Cancer Res; 2012 Oct; 18(19):5196-202. PubMed ID: 22730447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-mediated biological control.
    Cassavaugh J; Lounsbury KM
    J Cell Biochem; 2011 Mar; 112(3):735-44. PubMed ID: 21328446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.