These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27343826)

  • 61. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri.
    Korbut R; Mehrdana F; Kania PW; Larsen MH; Frees D; Dalsgaard I; Jørgensen Lv
    PLoS One; 2016; 11(7):e0158968. PubMed ID: 27404564
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish.
    Takaki K; Davis JM; Winglee K; Ramakrishnan L
    Nat Protoc; 2013 Jun; 8(6):1114-24. PubMed ID: 23680983
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An adult zebrafish model for preclinical tuberculosis vaccine development.
    Oksanen KE; Halfpenny NJ; Sherwood E; Harjula SK; Hammarén MM; Ahava MJ; Pajula ET; Lahtinen MJ; Parikka M; Rämet M
    Vaccine; 2013 Oct; 31(45):5202-9. PubMed ID: 24055305
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Superoxide production in phagocytes obtained from Mycobacterium marinum-stimulated goldfish (Carassius auratus) that were exposed to copper.
    Jacobson SV; Trucksis M; Kane AS; Reimschuessel R
    Am J Vet Res; 1999 Jun; 60(6):669-75. PubMed ID: 10376889
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oral Intubation of Adult Zebrafish: A Model for Evaluating Intestinal Uptake of Bioactive Compounds.
    Ji J; Thwaite R; Roher N
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30320745
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mycolactone-producing Mycobacterium marinum infection in captive Hong Kong warty newts and pathological evidence of impaired host immune function.
    Li WT; Chang HW; Pang VF; Wang FI; Liu CH; Chen TY; Guo JC; Wada T; Jeng CR
    Dis Aquat Organ; 2017 Mar; 123(3):239-249. PubMed ID: 28322210
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental mycobacteriosis in striped bass Morone saxatilis.
    Gauthier DT; Rhodes MW; Vogelbein WK; Kator H; Ottinger CA
    Dis Aquat Organ; 2003 Mar; 54(2):105-17. PubMed ID: 12747636
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection.
    Ordas A; Hegedus Z; Henkel CV; Stockhammer OW; Butler D; Jansen HJ; Racz P; Mink M; Spaink HP; Meijer AH
    Fish Shellfish Immunol; 2011 Nov; 31(5):716-24. PubMed ID: 20816807
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antigen-sampling cells in the salmonid intestinal epithelium.
    Fuglem B; Jirillo E; Bjerkås I; Kiyono H; Nochi T; Yuki Y; Raida M; Fischer U; Koppang EO
    Dev Comp Immunol; 2010 Jul; 34(7):768-74. PubMed ID: 20178814
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection.
    Chan K; Knaak T; Satkamp L; Humbert O; Falkow S; Ramakrishnan L
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3920-5. PubMed ID: 11891270
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts.
    Singh VK; Berry L; Bernut A; Singh S; Carrère-Kremer S; Viljoen A; Alibaud L; Majlessi L; Brosch R; Chaturvedi V; Geurtsen J; Drancourt M; Kremer L
    Cell Microbiol; 2016 Nov; 18(11):1489-1507. PubMed ID: 27120981
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos.
    Alibaud L; Rombouts Y; Trivelli X; Burguière A; Cirillo SL; Cirillo JD; Dubremetz JF; Guérardel Y; Lutfalla G; Kremer L
    Mol Microbiol; 2011 May; 80(4):919-34. PubMed ID: 21375593
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An interview with Lalita Ramakrishnan.
    Ramakrishnan L
    Trends Pharmacol Sci; 2013 Apr; 34(4):197. PubMed ID: 23566316
    [No Abstract]   [Full Text] [Related]  

  • 74. Analysis tools to quantify dissemination of pathology in zebrafish larvae.
    Stirling DR; Suleyman O; Gil E; Elks PM; Torraca V; Noursadeghi M; Tomlinson GS
    Sci Rep; 2020 Feb; 10(1):3149. PubMed ID: 32081863
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Transmucosal Nanoparticles: Toxicological Overview.
    Talkar S; Dhoble S; Majumdar A; Patravale V
    Adv Exp Med Biol; 2018; 1048():37-57. PubMed ID: 29453531
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport.
    Miao YB; Lin YJ; Chen KH; Luo PK; Chuang SH; Yu YT; Tai HM; Chen CT; Lin KJ; Sung HW
    Adv Mater; 2021 Dec; 33(51):e2104139. PubMed ID: 34596293
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microparticle targeting to M cells.
    Ermak TH; Giannasca PJ
    Adv Drug Deliv Rev; 1998 Dec; 34(2-3):261-283. PubMed ID: 10837681
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Toward Understanding in Vivo Sequestration of Nanoparticles at the Molecular Level.
    Yin B; Li KHK; Ho LWC; Chan CKW; Choi CHJ
    ACS Nano; 2018 Mar; 12(3):2088-2093. PubMed ID: 29485854
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oral delivery of pathogens from the intestine to the nervous system.
    Baird AW; Campion DP; O'Brien L; Brayden DJ
    J Drug Target; 2004 Feb; 12(2):71-8. PubMed ID: 15203900
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of nano- and microparticle uptake by the gastrointestinal tract.
    Delie F
    Adv Drug Deliv Rev; 1998 Dec; 34(2-3):221-233. PubMed ID: 10837679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.