These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 27343840)

  • 1. Upslope development of a tidal marsh as a function of upland land use.
    Anisfeld SC; Cooper KR; Kemp AC
    Glob Chang Biol; 2017 Feb; 23(2):755-766. PubMed ID: 27343840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States.
    Kauffman JB; Giovanonni L; Kelly J; Dunstan N; Borde A; Diefenderfer H; Cornu C; Janousek C; Apple J; Brophy L
    Glob Chang Biol; 2020 Oct; 26(10):5679-5692. PubMed ID: 32779311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upland forest retreat lags behind sea-level rise in the mid-Atlantic coast.
    Chen Y; Kirwan ML
    Glob Chang Biol; 2024 Jan; 30(1):e17081. PubMed ID: 38273570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity in coastal systems: Barrier island vegetation influences upland migration in a changing climate.
    Zinnert JC; Via SM; Nettleton BP; Tuley PA; Moore LJ; Stallins JA
    Glob Chang Biol; 2019 Jul; 25(7):2419-2430. PubMed ID: 30932269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hazardous and contaminated sites within salt marsh migration corridors in Rhode Island, USA.
    Burman E; Mulvaney K; Merrill N; Bradley M; Wigand C
    J Environ Manage; 2023 Apr; 331():117218. PubMed ID: 36640648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does National Wetland Inventory class consistently identify vegetation and edaphic differences in Oregon tidal wetlands?
    Janousek CN; Folger CL
    Wetl Ecol Manag; 2017 Sep; 26():315-329. PubMed ID: 36204421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise.
    Buffington KJ; Janousek CN; Dugger BD; Callaway JC; Schile-Beers LM; Borgnis Sloane E; Thorne KM
    PLoS One; 2021; 16(10):e0256707. PubMed ID: 34669722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seeds of change: characterizing the soil seed bank of a migrating salt marsh.
    Kottler EJ; Gedan K
    Ann Bot; 2020 Feb; 125(2):335-344. PubMed ID: 31408516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.
    Tabak NM; Laba M; Spector S
    PLoS One; 2016; 11(4):e0152437. PubMed ID: 27043136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary.
    Smith JA
    PLoS One; 2013; 8(5):e65091. PubMed ID: 23705031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate and plant controls on soil organic matter in coastal wetlands.
    Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB
    Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula.
    Leisnham PT; Sandoval-Mohapatra S
    Int J Environ Res Public Health; 2011 Aug; 8(8):3099-113. PubMed ID: 21909293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.
    Stagg CL; Schoolmaster DR; Krauss KW; Cormier N; Conner WH
    Ecology; 2017 Aug; 98(8):2003-2018. PubMed ID: 28489250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.