These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 27344007)

  • 1. Rainfall and hydrological stability alter the impact of top predators on food web structure and function.
    Marino NA; Srivastava DS; MacDonald AA; Leal JS; Campos AB; Farjalla VF
    Glob Chang Biol; 2017 Feb; 23(2):673-685. PubMed ID: 27344007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumptive effects and mismatch in predator-prey turnover rates cause inversion of biomass pyramids.
    de Omena PM; Srivastava DS; Romero GQ
    Oecologia; 2019 May; 190(1):159-168. PubMed ID: 30923907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trophic cascades within and across ecosystems: The role of anti-predatory defences, predator type and detritus quality.
    Piccoli GCO; Antiqueira PAP; Srivastava DS; Romero GQ
    J Anim Ecol; 2024 Jun; 93(6):755-768. PubMed ID: 38404168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of predatory ants within and across ecosystems in bromeliad food webs.
    Gonçalves AZ; Srivastava DS; Oliveira PS; Romero GQ
    J Anim Ecol; 2017 Jul; 86(4):790-799. PubMed ID: 28342283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fear Mediates Trophic Cascades: Nonconsumptive Effects of Predators Drive Aquatic Ecosystem Function.
    Breviglieri CPB; Oliveira PS; Romero GQ
    Am Nat; 2017 May; 189(5):490-500. PubMed ID: 28410025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs.
    Breviglieri CPB; Romero GQ
    Ecology; 2017 Aug; 98(8):2069-2080. PubMed ID: 28464251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.
    Majdi N; Boiché A; Traunspurger W; Lecerf A
    J Anim Ecol; 2014 Jul; 83(4):953-62. PubMed ID: 24286440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted climate change alters the indirect effect of predators on an ecosystem process.
    Lensing JR; Wise DH
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15502-5. PubMed ID: 17023538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of food web structure on ecosystem function exceeds those of precipitation.
    Trzcinski MK; Srivastava DS; Corbara B; Dézerald O; Leroy C; Carrias JF; Dejean A; Céréghino R
    J Anim Ecol; 2016 Sep; 85(5):1147-60. PubMed ID: 27120013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food-web composition affects cross-ecosystem interactions and subsidies.
    Romero GQ; Srivastava DS
    J Anim Ecol; 2010 Sep; 79(5):1122-31. PubMed ID: 20584097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.
    Amundrud SL; Srivastava DS
    Glob Chang Biol; 2019 Oct; 25(10):3528-3538. PubMed ID: 31148300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional traits of predators and decomposer prey determine context dependency in trophic control over ecosystems.
    Lienau JR; Schmitz OJ
    J Anim Ecol; 2024 Jun; 93(6):654-658. PubMed ID: 38708817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicted rainfall changes disrupt trophic interactions in a tropical aquatic ecosystem.
    Pires AP; Marino NA; Srivastava DS; Farjalla VF
    Ecology; 2016 Oct; 97(10):2750-2759. PubMed ID: 27859129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food web structure shaped by habitat size and climate across a latitudinal gradient.
    Romero GQ; Piccoli GC; de Omena PM; Gonçalves-Souza T
    Ecology; 2016 Oct; 97(10):2705-2715. PubMed ID: 27859108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food web persistence is enhanced by non-trophic interactions.
    Hammill E; Kratina P; Vos M; Petchey OL; Anholt BR
    Oecologia; 2015 Jun; 178(2):549-56. PubMed ID: 25656586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change effects on predator-prey interactions.
    Laws AN
    Curr Opin Insect Sci; 2017 Oct; 23():28-34. PubMed ID: 29129279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems.
    Dézerald O; Leroy C; Corbara B; Carrias JF; Pélozuelo L; Dejean A; Céréghino R
    PLoS One; 2013; 8(8):e71735. PubMed ID: 23977128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.
    Peckarsky BL; Abrams PA; Bolnick DI; Dill LM; Grabowski JH; Luttbeg B; Orrock JL; Peacor SD; Preisser EL; Schmitz OJ; Trussell GC
    Ecology; 2008 Sep; 89(9):2416-25. PubMed ID: 18831163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators accelerate nutrient cycling in a bromeliad ecosystem.
    Ngai JT; Srivastava DS
    Science; 2006 Nov; 314(5801):963. PubMed ID: 17095695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonconsumptive effects of a predator weaken then rebound over time.
    Kimbro DL; Grabowski JH; Hughes AR; Piehler MF; White JW
    Ecology; 2017 Mar; 98(3):656-667. PubMed ID: 27987303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.