BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 27344269)

  • 1. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane.
    Mauro M; Crosera M; Bovenzi M; Adami G; Filon FL
    Colloids Surf B Biointerfaces; 2016 Oct; 146():245-9. PubMed ID: 27344269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro permeability of silver nanoparticles through porcine oromucosal membrane.
    Mauro M; Crosera M; Bianco C; Bellomo F; Bovenzi M; Adami G; Filon FL
    Colloids Surf B Biointerfaces; 2015 Aug; 132():10-6. PubMed ID: 26001797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro meningeal permeation of MnFe
    Mauro M; Crosera M; Bovenzi M; Adami G; Baracchini E; Maina G; Filon FL
    Chem Biol Interact; 2018 Sep; 293():48-54. PubMed ID: 30053450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells.
    Milić M; Leitinger G; Pavičić I; Zebić Avdičević M; Dobrović S; Goessler W; Vinković Vrček I
    J Appl Toxicol; 2015 Jun; 35(6):581-92. PubMed ID: 25352480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.
    Li L; Wu H; Peijnenburg WJ; van Gestel CA
    Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver percutaneous absorption after exposure to silver nanoparticles: a comparison study of three human skin graft samples used for clinical applications.
    Bianco C; Adami G; Crosera M; Larese F; Casarin S; Castagnoli C; Stella M; Maina G
    Burns; 2014 Nov; 40(7):1390-6. PubMed ID: 24698780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.
    Xiu ZM; Ma J; Alvarez PJ
    Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver.
    Agnihotri S; Mukherji S; Mukherji S
    Nanoscale; 2013 Aug; 5(16):7328-40. PubMed ID: 23821237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of single particle ICP-MS to estimate silver nanoparticle penetration through baby porcine mucosa.
    Zanoni I; Crosera M; Pavoni E; Adami G; Mauro M; Costa AL; Lead JR; Larese Filon F
    Nanotoxicology; 2021 Oct; 15(8):1005-1015. PubMed ID: 34612156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry.
    Battistel D; Baldi F; Gallo M; Faleri C; Daniele S
    Talanta; 2015 Jan; 132():294-300. PubMed ID: 25476311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions.
    Makwana BA; Vyas DJ; Bhatt KD; Jain VK; Agrawal YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():73-80. PubMed ID: 25004898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide-mediated formation and charging of silver nanoparticles.
    Jones AM; Garg S; He D; Pham AN; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1428-34. PubMed ID: 21265570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development.
    Massarsky A; Dupuis L; Taylor J; Eisa-Beygi S; Strek L; Trudeau VL; Moon TW
    Chemosphere; 2013 Jun; 92(1):59-66. PubMed ID: 23548591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the uptake of silver nanoparticles and ions to HepG2 cells.
    Yu SJ; Chao JB; Sun J; Yin YG; Liu JF; Jiang GB
    Environ Sci Technol; 2013 Apr; 47(7):3268-74. PubMed ID: 23458171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells.
    Nymark P; Catalán J; Suhonen S; Järventaus H; Birkedal R; Clausen PA; Jensen KA; Vippola M; Savolainen K; Norppa H
    Toxicology; 2013 Nov; 313(1):38-48. PubMed ID: 23142790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust one pot synthesis of colloidal silver nanoparticles by simple redox method and absorbance recovered sensing.
    Salman M; Iqbal M; El Ashry el SH; Kanwal S
    Biosens Bioelectron; 2012; 36(1):236-41. PubMed ID: 22578269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly(vinylidene fluoride) membrane.
    Park SY; Chung JW; Chae YK; Kwak SY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10705-14. PubMed ID: 24144007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.