These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 27344307)

  • 1. Linking network topology to function: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski.
    di Bernardo D
    Phys Life Rev; 2016 Jul; 17():159-60. PubMed ID: 27344307
    [No Abstract]   [Full Text] [Related]  

  • 2. Simulating the actual and the possible: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski.
    François P
    Phys Life Rev; 2016 Jul; 17():161-2. PubMed ID: 27344304
    [No Abstract]   [Full Text] [Related]  

  • 3. Small-scale universality and large-scale diversity: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski.
    Ispolatov Y
    Phys Life Rev; 2016 Jul; 17():163-5. PubMed ID: 27341748
    [No Abstract]   [Full Text] [Related]  

  • 4. Understanding regulatory networks requires more than computing a multitude of graph statistics: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.
    Tkačik G
    Phys Life Rev; 2016 Jul; 17():166-7. PubMed ID: 27341749
    [No Abstract]   [Full Text] [Related]  

  • 5. Network architectures and operating principles: Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function".
    Martin OC; Zagorski M
    Phys Life Rev; 2016 Jul; 17():168-71. PubMed ID: 27365152
    [No Abstract]   [Full Text] [Related]  

  • 6. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function.
    Martin OC; Krzywicki A; Zagorski M
    Phys Life Rev; 2016 Jul; 17():124-58. PubMed ID: 27365153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and analyzing complex biological networks incooperating experimental information on both network topology and stable states.
    Zou YM
    Bioinformatics; 2010 Aug; 26(16):2037-41. PubMed ID: 20601441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML; Promislow DE; Bergman A
    Genetica; 2007 Jan; 129(1):83-103. PubMed ID: 16897451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of Boolean network models.
    Veliz-Cuba A
    J Theor Biol; 2011 Nov; 289():167-72. PubMed ID: 21907211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SimBioNeT: a simulator of biological network topology.
    Di Camillo B; Falda M; Toffolo G; Cobelli C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):592-600. PubMed ID: 21860065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural systems identification of genetic regulatory networks.
    Xiong H; Choe Y
    Bioinformatics; 2008 Feb; 24(4):553-60. PubMed ID: 18175769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving gene regulatory network inference using network topology information.
    Nair A; Chetty M; Wangikar PP
    Mol Biosyst; 2015 Sep; 11(9):2449-63. PubMed ID: 26126758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the operational characteristics of inference algorithms for transcriptional networks by means of synthetic data.
    Van Leemput K; Van den Bulcke T; Dhollander T; De Moor B; Marchal K; van Remortel P
    Artif Life; 2008; 14(1):49-63. PubMed ID: 18171130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical decomposition of dynamically evolving regulatory networks.
    Ay A; Gong D; Kahveci T
    BMC Bioinformatics; 2015 May; 16():161. PubMed ID: 25976669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology-function conservation in protein-protein interaction networks.
    Davis D; Yaveroğlu ÖN; Malod-Dognin N; Stojmirovic A; Pržulj N
    Bioinformatics; 2015 May; 31(10):1632-9. PubMed ID: 25609797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and structural constraints in signal propagation by regulatory networks.
    Estrada J; Guantes R
    Mol Biosyst; 2013 Feb; 9(2):268-84. PubMed ID: 23224050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast ranking algorithm for predicting gene functions in biomolecular networks.
    Re M; Mesiti M; Valentini G
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1812-8. PubMed ID: 23221088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary threshold networks as a natural null model for biological networks.
    Rybarsch M; Bornholdt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026114. PubMed ID: 23005832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.