These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27344560)
1. Risk assessment of selected priority pollutants coming from boating activities. Ansanelli G; Parrella L; Di Landa G; Massanisso P; Schiavo S; Manzo S Environ Monit Assess; 2016 Jul; 188(7):435. PubMed ID: 27344560 [TBL] [Abstract][Full Text] [Related]
2. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf. Saleh A; Molaei S; Sheijooni Fumani N; Abedi E Mar Pollut Bull; 2016 Apr; 105(1):367-72. PubMed ID: 26917092 [TBL] [Abstract][Full Text] [Related]
3. Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Thomas KV; Fileman TW; Readman JW; Waldock MJ Mar Pollut Bull; 2001 Aug; 42(8):677-88. PubMed ID: 11525285 [TBL] [Abstract][Full Text] [Related]
4. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Kim NS; Shim WJ; Yim UH; Hong SH; Ha SY; Han GM; Shin KH Mar Pollut Bull; 2014 Jan; 78(1-2):201-8. PubMed ID: 24295595 [TBL] [Abstract][Full Text] [Related]
5. Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries. Comber SD; Gardner MJ; Boxall AB J Environ Monit; 2002 Jun; 4(3):417-25. PubMed ID: 12094938 [TBL] [Abstract][Full Text] [Related]
6. Antifouling biocides in water and sediments from California marinas. Sapozhnikova Y; Wirth E; Schiff K; Fulton M Mar Pollut Bull; 2013 Apr; 69(1-2):189-94. PubMed ID: 23453818 [TBL] [Abstract][Full Text] [Related]
7. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea. Manzo S; Ansanelli G; Parrella L; Di Landa G; Massanisso P; Schiavo S; Minopoli C; Lanza B; Boggia R; Aleksi P; Tabaku A Environ Sci Process Impacts; 2014 Aug; 16(8):1981-93. PubMed ID: 24936527 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and partitioning of antifouling booster biocides in sediments and porewaters from Brazilian Northeast. Viana JLM; Dos Santos SRV; Dos Santos Franco TCR; Almeida MAP Environ Pollut; 2019 Dec; 255(Pt 1):112988. PubMed ID: 31541816 [TBL] [Abstract][Full Text] [Related]
9. Antifouling herbicides in the coastal waters of western Japan. Okamura H; Aoyama I; Ono Y; Nishida T Mar Pollut Bull; 2003; 47(1-6):59-67. PubMed ID: 12787598 [TBL] [Abstract][Full Text] [Related]
10. Determination of diuron and the antifouling paint biocide irgarol 1051 in Dutch marinas and coastal waters. Lamoree MH; Swart CP; van der Horst A; van Hattum B J Chromatogr A; 2002 Sep; 970(1-2):183-90. PubMed ID: 12350092 [TBL] [Abstract][Full Text] [Related]
11. Assessing the spatiotemporal occurrence and ecological risk of antifouling biocides in a Brazilian estuary. das Mercês Pereira Ferreira A; de Matos JM; Silva LK; Viana JLM; Dos Santos Diniz Freitas M; de Amarante Júnior OP; Franco TCRDS; Brito NM Environ Sci Pollut Res Int; 2024 Jan; 31(3):3572-3581. PubMed ID: 38085476 [TBL] [Abstract][Full Text] [Related]
12. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama. Batista-Andrade JA; Caldas SS; Batista RM; Castro IB; Fillmann G; Primel EG Environ Pollut; 2018 Mar; 234():243-252. PubMed ID: 29179127 [TBL] [Abstract][Full Text] [Related]
13. Contamination of diuron in coastal waters around Malaysian Peninsular. Ali HR; Arifin MM; Sheikh MA; Shazili NA; Bakari SS; Bachok Z Mar Pollut Bull; 2014 Aug; 85(1):287-91. PubMed ID: 24934440 [TBL] [Abstract][Full Text] [Related]
14. Antifouling biocides as a continuous threat to the aquatic environment: Sources, temporal trends and ecological risk assessment in an impacted region of Brazil. Viana JLM; Diniz MDS; Santos SRVD; Verbinnen RT; Almeida MAP; Franco TCRDS Sci Total Environ; 2020 Aug; 730():139026. PubMed ID: 32416504 [TBL] [Abstract][Full Text] [Related]
15. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain). Sánchez-Rodríguez A; Sosa-Ferrera Z; Santana-del Pino A; Santana-Rodríguez JJ Mar Pollut Bull; 2011 May; 62(5):985-91. PubMed ID: 21396664 [TBL] [Abstract][Full Text] [Related]
16. Antifouling booster biocides in coastal waters of Panama: First appraisal in one of the busiest shipping zones. Batista-Andrade JA; Caldas SS; de Oliveira Arias JL; Castro IB; Fillmann G; Primel EG Mar Pollut Bull; 2016 Nov; 112(1-2):415-419. PubMed ID: 27496683 [TBL] [Abstract][Full Text] [Related]
17. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Kim NS; Hong SH; An JG; Shin KH; Shim WJ Mar Pollut Bull; 2015 Jun; 95(1):484-90. PubMed ID: 25843442 [TBL] [Abstract][Full Text] [Related]
18. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Cresswell T; Richards JP; Glegg GA; Readman JW Mar Pollut Bull; 2006 Oct; 52(10):1169-75. PubMed ID: 16574163 [TBL] [Abstract][Full Text] [Related]
19. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Hall LW; Giddings JM; Solomon KR; Balcomb R Crit Rev Toxicol; 1999 Jul; 29(4):367-437. PubMed ID: 10451264 [TBL] [Abstract][Full Text] [Related]
20. A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: Estimation of the carbon footprint. Pla-Tolós J; Serra-Mora P; Hakobyan L; Molins-Legua C; Moliner-Martinez Y; Campins-Falcó P Sci Total Environ; 2016 Nov; 569-570():611-618. PubMed ID: 27376916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]