These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27344571)

  • 1. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment.
    Zhang Y; Storey KB
    Cell Stress Chaperones; 2016 Sep; 21(5):883-94. PubMed ID: 27344571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.
    Zhang Y; Storey KB
    Mol Cell Biochem; 2016 Jan; 412(1-2):27-40. PubMed ID: 26597853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP kinase signaling and Elk1 transcriptional activity in hibernating thirteen-lined ground squirrels.
    Tessier SN; Zhang Y; Wijenayake S; Storey KB
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2811-2821. PubMed ID: 28778486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels.
    Wu CW; Storey KB
    Cell Cycle; 2012 May; 11(9):1714-26. PubMed ID: 22510572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels.
    Tessier SN; Storey KB
    Gene; 2012 Jun; 501(1):8-16. PubMed ID: 22513076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.
    Biggar Y; Storey KB
    Cryobiology; 2014 Oct; 69(2):333-8. PubMed ID: 25192827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of skeletal muscle atrophy during torpor in ground squirrels occurs through downregulation of MyoG and inactivation of Foxo4.
    Zhang Y; Tessier SN; Storey KB
    Cryobiology; 2016 Oct; 73(2):112-9. PubMed ID: 27593478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus.
    Luu BE; Tessier SN; Duford DL; Storey KB
    PLoS One; 2015; 10(2):e0117747. PubMed ID: 25679215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heart of a hibernator: EGFR and MAPK signaling in cardiac muscle during the hibernation of thirteen-lined ground squirrels,
    Childers CL; Tessier SN; Storey KB
    PeerJ; 2019; 7():e7587. PubMed ID: 31534849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels.
    Logan SM; Storey KB
    Cryobiology; 2016 Oct; 73(2):103-11. PubMed ID: 27614289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle satellite cells increase during hibernation in ground squirrels.
    Brooks NE; Myburgh KH; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Nov; 189():55-61. PubMed ID: 26219581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.
    Logan SM; Tessier SN; Tye J; Storey KB
    Mol Cell Biochem; 2016 Mar; 414(1-2):115-27. PubMed ID: 26885984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels.
    Wu CW; Storey KB
    J Exp Biol; 2012 May; 215(Pt 10):1720-7. PubMed ID: 22539739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus.
    Alvarado S; Mak T; Liu S; Storey KB; Szyf M
    J Exp Biol; 2015 Jun; 218(Pt 11):1787-95. PubMed ID: 25908059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.
    Tessier SN; Storey KB
    Mol Cell Biochem; 2010 Nov; 344(1-2):151-62. PubMed ID: 20617369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myostatin levels in skeletal muscle of hibernating ground squirrels.
    Brooks NE; Myburgh KH; Storey KB
    J Exp Biol; 2011 Aug; 214(Pt 15):2522-7. PubMed ID: 21753045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation.
    Zhang Y; Aguilar OA; Storey KB
    PeerJ; 2016; 4():e2317. PubMed ID: 27602284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.
    Nelson BT; Ding X; Boney-Montoya J; Gerard RD; Kliewer SA; Andrews MT
    PLoS One; 2013; 8(1):e53574. PubMed ID: 23301087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5'-Adenosine monophosphate deaminase regulation in ground squirrels during hibernation.
    Abnous K; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 253():110543. PubMed ID: 33301876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular resistance to thrombosis in 13-lined ground squirrels.
    Bonis A; Anderson L; Talhouarne G; Schueller E; Unke J; Krus C; Stokka J; Koepke A; Lehrer B; Schuh A; Andersen JJ; Cooper S
    J Comp Physiol B; 2019 Feb; 189(1):167-177. PubMed ID: 30317383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.