BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27344651)

  • 1. Cyanobacterial ultrastructure in light of genomic sequence data.
    Gonzalez-Esquer CR; Smarda J; Rippka R; Axen SD; Guglielmi G; Gugger M; Kerfeld CA
    Photosynth Res; 2016 Aug; 129(2):147-57. PubMed ID: 27344651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.
    Shih PM; Wu D; Latifi A; Axen SD; Fewer DP; Talla E; Calteau A; Cai F; Tandeau de Marsac N; Rippka R; Herdman M; Sivonen K; Coursin T; Laurent T; Goodwin L; Nolan M; Davenport KW; Han CS; Rubin EM; Eisen JA; Woyke T; Gugger M; Kerfeld CA
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1053-8. PubMed ID: 23277585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.
    Zhu T; Scalvenzi T; Sassoon N; Lu X; Gugger M
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29728380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications.
    Stucken K; John U; Cembella A; Murillo AA; Soto-Liebe K; Fuentes-Valdés JJ; Friedel M; Plominsky AM; Vásquez M; Glöckner G
    PLoS One; 2010 Feb; 5(2):e9235. PubMed ID: 20169071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein.
    Stanley DN; Raines CA; Kerfeld CA
    Plant Physiol; 2013 Feb; 161(2):824-35. PubMed ID: 23184231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modules of co-occurrence in the cyanobacterial pan-genome reveal functional associations between groups of ortholog genes.
    Beck C; Knoop H; Steuer R
    PLoS Genet; 2018 Mar; 14(3):e1007239. PubMed ID: 29522508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the genomes of cyanobacteria and plants.
    Sato N
    Genome Inform; 2002; 13():173-82. PubMed ID: 14571386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families.
    Swingley WD; Blankenship RE; Raymond J
    Mol Biol Evol; 2008 Apr; 25(4):643-54. PubMed ID: 18296704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CyanoOmicsDB: an integrated omics database for functional genomic analysis of cyanobacteria.
    Zhou P; Wang L; Liu H; Li C; Li Z; Wang J; Tan X
    Nucleic Acids Res; 2022 Jan; 50(D1):D758-D764. PubMed ID: 34614159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community.
    Hughes RA; Zhang Y; Zhang R; Williams PG; Lindsey JS; Miller ES
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.
    Uyeda JC; Harmon LJ; Blank CE
    PLoS One; 2016; 11(9):e0162539. PubMed ID: 27649395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host.
    Nakayama T; Nomura M; Takano Y; Tanifuji G; Shiba K; Inaba K; Inagaki Y; Kawata M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15973-15978. PubMed ID: 31235587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms.
    Beck C; Knoop H; Axmann IM; Steuer R
    BMC Genomics; 2012 Feb; 13():56. PubMed ID: 22300633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.
    Prabha R; Singh DP; Sinha S; Ahmad K; Rai A
    Mar Genomics; 2017 Apr; 32():31-39. PubMed ID: 27733306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial Genome Sequencing, Annotation, and Bioinformatics.
    Teikari J; Baunach M; Dittmann E
    Methods Mol Biol; 2022; 2489():269-287. PubMed ID: 35524055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome evolution in cyanobacteria: the stable core and the variable shell.
    Shi T; Falkowski PG
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2510-5. PubMed ID: 18268351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes.
    Xu M; Lawrence JG; Durand D
    Nucleic Acids Res; 2018 Mar; 46(5):2265-2278. PubMed ID: 29432573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cyanobacterial genome core and the origin of photosynthesis.
    Mulkidjanian AY; Koonin EV; Makarova KS; Mekhedov SL; Sorokin A; Wolf YI; Dufresne A; Partensky F; Burd H; Kaznadzey D; Haselkorn R; Galperin MY
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13126-31. PubMed ID: 16924101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacterial-based approaches to improving photosynthesis in plants.
    Zarzycki J; Axen SD; Kinney JN; Kerfeld CA
    J Exp Bot; 2013 Jan; 64(3):787-98. PubMed ID: 23095996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.