These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27344677)
1. CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. Beli E; Dominguez JM; Hu P; Thinschmidt JS; Caballero S; Li Calzi S; Luo D; Shanmugam S; Salazar TE; Duan Y; Boulton ME; Mohr S; Abcouwer SF; Saban DR; Harrison JK; Grant MB J Mol Med (Berl); 2016 Nov; 94(11):1255-1265. PubMed ID: 27344677 [TBL] [Abstract][Full Text] [Related]
2. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response. Liao YR; Li ZJ; Zeng P; Lan YQ Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858 [TBL] [Abstract][Full Text] [Related]
3. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression. Chaudhary K; Promsote W; Ananth S; Veeranan-Karmegam R; Tawfik A; Arjunan P; Martin P; Smith SB; Thangaraju M; Kisselev O; Ganapathy V; Gnana-Prakasam JP Sci Rep; 2018 Feb; 8(1):3025. PubMed ID: 29445185 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological depletion of microglia alleviates neuronal and vascular damage in the diabetic CX3CR1-WT retina but not in CX3CR1-KO or hCX3CR1 Church KA; Rodriguez D; Mendiola AS; Vanegas D; Gutierrez IL; Tamayo I; Amadu A; Velazquez P; Cardona SM; Gyoneva S; Cotleur AC; Ransohoff RM; Kaur T; Cardona AE Front Immunol; 2023; 14():1130735. PubMed ID: 37033925 [TBL] [Abstract][Full Text] [Related]
5. CX Lee YS; Kim MH; Yi HS; Kim SY; Kim HH; Kim JH; Yeon JE; Byun KS; Byun JS; Jeong WI Sci Rep; 2018 Oct; 8(1):15076. PubMed ID: 30305672 [TBL] [Abstract][Full Text] [Related]
6. NLRP1 deficiency attenuates diabetic retinopathy (DR) in mice through suppressing inflammation response. Li Y; Liu C; Wan XS; Li SW Biochem Biophys Res Commun; 2018 Jun; 501(2):351-357. PubMed ID: 29571734 [TBL] [Abstract][Full Text] [Related]
8. IL-10-induced modulation of macrophage polarization suppresses outer-blood-retinal barrier disruption in the streptozotocin-induced early diabetic retinopathy mouse model. Lee SJ; Noh SE; Jo DH; Cho CS; Park KS; Kim JH FASEB J; 2024 May; 38(9):e23638. PubMed ID: 38713098 [TBL] [Abstract][Full Text] [Related]
9. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Kim D; Mecham RP; Nguyen NH; Roy S Exp Eye Res; 2019 Jul; 184():221-226. PubMed ID: 31022398 [TBL] [Abstract][Full Text] [Related]
10. Deletion of Socs3 in LysM Du X; Penalva R; Little K; Kissenpfennig A; Chen M; Xu H Mol Neurodegener; 2021 Feb; 16(1):9. PubMed ID: 33602265 [TBL] [Abstract][Full Text] [Related]
11. The effect of total lignans from Fructus Arctii on Streptozotocin-induced diabetic retinopathy in Wistar rats. Zhang H; Gao Y; Zhang J; Wang K; Jin T; Wang H; Ruan K; Wu F; Xu Z J Ethnopharmacol; 2020 Jun; 255():112773. PubMed ID: 32199990 [TBL] [Abstract][Full Text] [Related]
12. Systemic alterations in leukocyte subsets and the protective role of NKT cells in the mouse model of diabetic retinopathy. Suvas P; Liu L; Rao P; Steinle JJ; Suvas S Exp Eye Res; 2020 Nov; 200():108203. PubMed ID: 32890483 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic potential of histamine H Kwon JW; Lee K; Kim SW; Park J; Hong JJ; Che JH; Seok SH Sci Rep; 2024 Sep; 14(1):22664. PubMed ID: 39349555 [TBL] [Abstract][Full Text] [Related]
14. Toll-like receptor 4 in bone marrow-derived cells contributes to the progression of diabetic retinopathy. Wang H; Shi H; Zhang J; Wang G; Zhang J; Jiang F; Xiao Q Mediators Inflamm; 2014; 2014():858763. PubMed ID: 25214718 [TBL] [Abstract][Full Text] [Related]
15. Non-redundant role of the chemokine receptor CX3CR1 in the anti-inflammatory function of gut macrophages. Marelli G; Belgiovine C; Mantovani A; Erreni M; Allavena P Immunobiology; 2017 Feb; 222(2):463-472. PubMed ID: 27707514 [TBL] [Abstract][Full Text] [Related]
16. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy. Chakravarthy H; Beli E; Navitskaya S; O'Reilly S; Wang Q; Kady N; Huang C; Grant MB; Busik JV PLoS One; 2016; 11(1):e0146829. PubMed ID: 26760976 [TBL] [Abstract][Full Text] [Related]
17. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents. Qiu AW; Liu QH; Wang JL Cell Physiol Biochem; 2017; 41(3):960-972. PubMed ID: 28222445 [TBL] [Abstract][Full Text] [Related]
18. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17-3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Li W; Jin LY; Cui YB; Xie N Int Immunopharmacol; 2021 Jan; 90():107010. PubMed ID: 33333415 [TBL] [Abstract][Full Text] [Related]
19. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. Rangasamy S; McGuire PG; Franco Nitta C; Monickaraj F; Oruganti SR; Das A PLoS One; 2014; 9(10):e108508. PubMed ID: 25329075 [TBL] [Abstract][Full Text] [Related]
20. Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. Noda K; Nakao S; Zandi S; Sun D; Hayes KC; Hafezi-Moghadam A FASEB J; 2014 May; 28(5):2038-46. PubMed ID: 24571922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]