These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 27344716)

  • 1. [Mechanism of invasion and metastasis of prostate cancer: over view].
    Kanayama H
    Nihon Rinsho; 2016 May; 74 Suppl 3():129-34. PubMed ID: 27344716
    [No Abstract]   [Full Text] [Related]  

  • 2. [Molecules associated with invasion and metastasis in prostate cancer].
    Ashida S; Inoue K; Shuin T
    Nihon Rinsho; 2016 May; 74 Suppl 3():135-9. PubMed ID: 27344717
    [No Abstract]   [Full Text] [Related]  

  • 3. [Mechanism of prostate cancer invasion and metastasis].
    Sakamoto S; Ichikawa T
    Nihon Rinsho; 2014 Dec; 72(12):2086-9. PubMed ID: 25518338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells.
    Labrecque MP; Takhar MK; Nason R; Santacruz S; Tam KJ; Massah S; Haegert A; Bell RH; Altamirano-Dimas M; Collins CC; Lee FJ; Prefontaine GG; Cox ME; Beischlag TV
    Oncotarget; 2016 Apr; 7(17):24284-302. PubMed ID: 27015368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyk2 and Cyr61 at the cross-road of cAMP-dependent signalling in invasiveness and neuroendocrine differentiation of prostate cancer.
    Vitale G; Gentilini D; Abbruzzese A; Caraglia M
    Cancer Biol Ther; 2009 Feb; 8(3):243-4. PubMed ID: 19182531
    [No Abstract]   [Full Text] [Related]  

  • 6. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression.
    Zhao Y; Li W
    Asian J Androl; 2019; 21(3):253-259. PubMed ID: 29848834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostate cancer with Paneth cell-like neuroendocrine differentiation and extensive perineural invasion: coincidence or causal relationship?
    Kakies C; Hakenberg OW; Gunia S; Erbersdobler A
    Pathol Res Pract; 2011 Nov; 207(11):715-7. PubMed ID: 21924841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Neuroendocrine differentiation in prostate cancer].
    Wu CY; Na YQ; Yao JL; di Sant'Agnese PA; Huang JT
    Zhonghua Bing Li Xue Za Zhi; 2006 Sep; 35(9):565-7. PubMed ID: 17134555
    [No Abstract]   [Full Text] [Related]  

  • 9. NEDD9 crucially regulates TGF-β-triggered epithelial-mesenchymal transition and cell invasion in prostate cancer cells: involvement in cancer progressiveness.
    Morimoto K; Tanaka T; Nitta Y; Ohnishi K; Kawashima H; Nakatani T
    Prostate; 2014 Jun; 74(8):901-10. PubMed ID: 24728978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of epithelial and mesenchymal proteins in a panel of prostate cancer cell lines.
    Murali AK; Norris JS
    J Urol; 2012 Aug; 188(2):632-8. PubMed ID: 22704442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance.
    Marcu M; Radu E; Sajin M
    Rom J Morphol Embryol; 2010; 51(1):7-12. PubMed ID: 20191113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion.
    Cho KH; Choi MJ; Jeong KJ; Kim JJ; Hwang MH; Shin SC; Park CG; Lee HY
    Prostate; 2014 May; 74(5):528-36. PubMed ID: 24435707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer.
    Zhu Y; Wu J; Li S; Wang X; Liang Z; Xu X; Xu X; Hu Z; Lin Y; Chen H; Qin J; Mao Q; Xie L
    Mol Med Rep; 2015 Feb; 11(2):1004-8. PubMed ID: 25351792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic significance of neuroendocrine differentiation in prostate adenocarcinoma.
    Sagnak L; Topaloglu H; Ozok U; Ersoy H
    Clin Genitourin Cancer; 2011 Dec; 9(2):73-80. PubMed ID: 22035833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human kallikrein 7 induces epithelial-mesenchymal transition-like changes in prostate carcinoma cells: a role in prostate cancer invasion and progression.
    Mo L; Zhang J; Shi J; Xuan Q; Yang X; Qin M; Lee C; Klocker H; Li QQ; Mo Z
    Anticancer Res; 2010 Sep; 30(9):3413-20. PubMed ID: 20944116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SATB1 promotes prostate cancer metastasis by the regulation of epithelial-mesenchymal transition.
    Mao LJ; Yang CH; Fan L; Gao P; Yang DR; Xue BX; Zheng JN; Shan YX
    Biomed Pharmacother; 2016 Apr; 79():1-8. PubMed ID: 27044805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Androgen receptor inhibits epithelial-mesenchymal transition, migration, and invasion of PC-3 prostate cancer cells.
    Huo C; Kao YH; Chuu CP
    Cancer Lett; 2015 Dec; 369(1):103-11. PubMed ID: 26297988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neuroendocrine differentiation of prostate cancer].
    Nishikawa K; Sugimura Y
    Nihon Rinsho; 2016 May; 74 Suppl 3():122-6. PubMed ID: 27344715
    [No Abstract]   [Full Text] [Related]  

  • 19. Multiple metastases in a novel LNCaP model of human prostate cancer.
    Zou M; Jiao J; Zou Q; Xu Y; Cheng M; Xu J; Zhang Y
    Oncol Rep; 2013 Aug; 30(2):615-22. PubMed ID: 23446457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer.
    Ding G; Fang J; Tong S; Qu L; Jiang H; Ding Q; Liu J
    Prostate; 2015 Jun; 75(9):957-68. PubMed ID: 25728945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.