These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 27344962)
1. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. Menant O; Andersson F; Zelena D; Chaillou E J Chem Neuroanat; 2016 Nov; 77():110-120. PubMed ID: 27344962 [TBL] [Abstract][Full Text] [Related]
2. First evidence of neuronal connections between specific parts of the periaqueductal gray (PAG) and the rest of the brain in sheep: placing the sheep PAG in the circuit of emotion. Menant O; Prima MC; Morisse M; Cornilleau F; Moussu C; Gautier A; Blanchon H; Meurisse M; Delagrange P; Tillet Y; Chaillou E Brain Struct Funct; 2018 Sep; 223(7):3297-3316. PubMed ID: 29869133 [TBL] [Abstract][Full Text] [Related]
3. Electroacupuncture induces c-Fos expression in the rostral ventrolateral medulla and periaqueductal gray in cats: relation to opioid containing neurons. Guo ZL; Moazzami AR; Longhurst JC Brain Res; 2004 Dec; 1030(1):103-15. PubMed ID: 15567342 [TBL] [Abstract][Full Text] [Related]
4. Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus. Kingsbury MA; Kelly AM; Schrock SE; Goodson JL PLoS One; 2011; 6(6):e20720. PubMed ID: 21694758 [TBL] [Abstract][Full Text] [Related]
5. Connectivity-based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI. Ezra M; Faull OK; Jbabdi S; Pattinson KT Hum Brain Mapp; 2015 Sep; 36(9):3459-71. PubMed ID: 26138504 [TBL] [Abstract][Full Text] [Related]
6. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Madasu MK; Okine BN; Olango WM; Rea K; Lenihan R; Roche M; Finn DP Pharmacol Res; 2016 Nov; 113(Pt A):44-54. PubMed ID: 27520401 [TBL] [Abstract][Full Text] [Related]
7. A 7-Tesla MRI study of the periaqueductal gray: resting state and task activation under threat. Weis CN; Bennett KP; Huggins AA; Parisi EA; Gorka SM; Larson C Soc Cogn Affect Neurosci; 2022 Feb; 17(2):187-197. PubMed ID: 34244809 [TBL] [Abstract][Full Text] [Related]
8. Differential distribution of parvalbumin- and calbindin-D28K-immunoreactive neurons in the rat periaqueductal gray matter and their colocalization with enzymes producing nitric oxide. Barbaresi P; Mensà E; Lariccia V; Pugnaloni A; Amoroso S; Fabri M Brain Res Bull; 2013 Oct; 99():48-62. PubMed ID: 24107244 [TBL] [Abstract][Full Text] [Related]
9. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Yu R; Gollub RL; Spaeth R; Napadow V; Wasan A; Kong J Neuroimage Clin; 2014; 6():100-8. PubMed ID: 25379421 [TBL] [Abstract][Full Text] [Related]
10. Fos expression induced by changes in arterial pressure is localized in distinct, longitudinally organized columns of neurons in the rat midbrain periaqueductal gray. Murphy AZ; Ennis M; Rizvi TA; Behbehani MM; Shipley MT J Comp Neurol; 1995 Sep; 360(2):286-300. PubMed ID: 8522648 [TBL] [Abstract][Full Text] [Related]
11. Volume expansion of periaqueductal gray in episodic migraine: a pilot MRI structural imaging study. Chen Z; Chen X; Liu M; Liu S; Ma L; Yu S J Headache Pain; 2017 Aug; 18(1):83. PubMed ID: 28808987 [TBL] [Abstract][Full Text] [Related]
12. Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat. Smith GS; Savery D; Marden C; López Costa JJ; Averill S; Priestley JV; Rattray M J Comp Neurol; 1994 Dec; 350(1):23-40. PubMed ID: 7860799 [TBL] [Abstract][Full Text] [Related]
13. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study. Rizvi TA; Ennis M; Shipley MT J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779 [TBL] [Abstract][Full Text] [Related]
14. Two parts of the nucleus prepositus hypoglossi project to two different subdivisions of the dorsolateral periaqueductal gray in cat. Klop EM; Mouton LJ; Ehling T; Holstege G J Comp Neurol; 2005 Nov; 492(3):303-22. PubMed ID: 16217796 [TBL] [Abstract][Full Text] [Related]
15. Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin. Flores JA; Galan-Rodriguez B; Ramiro-Fuentes S; Fernandez-Espejo E Neuropsychopharmacology; 2006 Jul; 31(7):1475-88. PubMed ID: 16292327 [TBL] [Abstract][Full Text] [Related]
16. Arginine vasopressin enhances periaqueductal gray synthesis and secretion of enkephalin and endorphin in the rat. Yang J; Yang Y; Xu HT; Chen JM; Liu WY; Lin BC Brain Res Bull; 2006 Dec; 71(1-3):193-9. PubMed ID: 17113946 [TBL] [Abstract][Full Text] [Related]
17. Arginine vasopressin induces periaqueductal gray release of enkephalin and endorphin relating to pain modulation in the rat. Yang J; Yang Y; Xu HT; Chen JM; Liu WY; Lin BC Regul Pept; 2007 Jul; 142(1-2):29-36. PubMed ID: 17341433 [TBL] [Abstract][Full Text] [Related]
18. Androgen and estrogen (alpha) receptor distribution in the periaqueductal gray of the male Rat. Murphy AZ; Shupnik MA; Hoffman GE Horm Behav; 1999 Oct; 36(2):98-108. PubMed ID: 10506534 [TBL] [Abstract][Full Text] [Related]
19. Volume gain of periaqueductal gray in medication-overuse headache. Chen Z; Chen X; Liu M; Liu S; Ma L; Yu S J Headache Pain; 2017 Dec; 18(1):12. PubMed ID: 28144808 [TBL] [Abstract][Full Text] [Related]
20. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia. Truini A; Tinelli E; Gerardi MC; Calistri V; Iannuccelli C; La Cesa S; Tarsitani L; Mainero C; Sarzi-Puttini P; Cruccu G; Caramia F; Di Franco M Clin Exp Rheumatol; 2016; 34(2 Suppl 96):S129-33. PubMed ID: 27157397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]