These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. 3D inkjet printed self-propelled motors for micro-stirring. Kumar P; Zhang Y; Ebbens SJ; Zhao X J Colloid Interface Sci; 2022 Oct; 623():96-108. PubMed ID: 35576653 [TBL] [Abstract][Full Text] [Related]
7. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique]. Zhang W; He J; Li X; Liu Y; Bian W; Li D; Jin Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):314-7. PubMed ID: 24844011 [TBL] [Abstract][Full Text] [Related]
8. Reactive Inkjet Printing of Regenerated Silk Fibroin Films for Use as Dental Barrier Membranes. Rider PM; Brook IM; Smith PJ; Miller CA Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393322 [TBL] [Abstract][Full Text] [Related]
9. Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions. Tao H; Marelli B; Yang M; An B; Onses MS; Rogers JA; Kaplan DL; Omenetto FG Adv Mater; 2015 Aug; 27(29):4273-9. PubMed ID: 26079217 [TBL] [Abstract][Full Text] [Related]
10. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788 [TBL] [Abstract][Full Text] [Related]
11. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Yan LP; Silva-Correia J; Correia C; Caridade SG; Fernandes EM; Sousa RA; Mano JF; Oliveira JM; Oliveira AL; Reis RL Nanomedicine (Lond); 2013 Mar; 8(3):359-78. PubMed ID: 23259755 [TBL] [Abstract][Full Text] [Related]
14. "Print-to-pattern": Silk-Based Water Lithography. Liu Z; Zhou Z; Zhang S; Sun L; Shi Z; Mao Y; Liu K; Tao TH Small; 2018 Nov; 14(47):e1802953. PubMed ID: 30277661 [TBL] [Abstract][Full Text] [Related]
15. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
16. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D. Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348 [TBL] [Abstract][Full Text] [Related]
17. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222 [TBL] [Abstract][Full Text] [Related]
18. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue. Chiarini A; Freddi G; Liu D; Armato U; Dal Prà I Tissue Eng Part A; 2016 Aug; 22(15-16):1047-60. PubMed ID: 27411949 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations cytocompatible, inkjet-printed polypyrrole films. Weng B; Liu X; Higgins MJ; Shepherd R; Wallace G Small; 2011 Dec; 7(24):3434-8. PubMed ID: 21972116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]