BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

751 related articles for article (PubMed ID: 27345060)

  • 1. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F; Max Risse J; Friehs K; Wendisch VF
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
    Lindner SN; Seibold GM; Henrich A; Krämer R; Wendisch VF
    Appl Environ Microbiol; 2011 Jun; 77(11):3571-81. PubMed ID: 21478323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.
    Lindner SN; Seibold GM; Krämer R; Wendisch VF
    Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B
    Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production.
    Xu JZ; Yu HB; Han M; Liu LM; Zhang WG
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):937-949. PubMed ID: 30937555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition.
    Matsushima Y; Hirasawa T; Shimizu H
    J Gen Appl Microbiol; 2016; 62(1):42-5. PubMed ID: 26923131
    [No Abstract]   [Full Text] [Related]  

  • 10. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for glycolate production.
    Zahoor A; Otten A; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():366-75. PubMed ID: 24486442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
    Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J
    Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
    Engels V; Lindner SN; Wendisch VF
    J Bacteriol; 2008 Dec; 190(24):8033-44. PubMed ID: 18849435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833.
    Ikeda M; Noguchi N; Ohshita M; Senoo A; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.