BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27345200)

  • 1. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.
    Wang J; Zhang X; Wang P; Wang X; Farris AB; Wang Y
    Life Sci Space Res (Amst); 2016 Jun; 9():48-55. PubMed ID: 27345200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.
    Wang X; Farris Iii AB; Wang P; Zhang X; Wang H; Wang Y
    Radiat Res; 2015 Feb; 183(2):233-9. PubMed ID: 25635344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of space radiation fatality risk for exploration missions.
    Cucinotta FA; To K; Cacao E
    Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safe days in space with acceptable uncertainty from space radiation exposure.
    Cucinotta FA; Alp M; Rowedder B; Kim MH
    Life Sci Space Res (Amst); 2015 Apr; 5():31-8. PubMed ID: 26177847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure.
    Suman S; Kumar S; Kallakury BVS; Moon BH; Angdisen J; Datta K; Fornace AJ
    Radiat Environ Biophys; 2022 Nov; 61(4):631-637. PubMed ID: 36167896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence.
    Huang EG; Wang RY; Xie L; Chang P; Yao G; Zhang B; Ham DW; Lin Y; Blakely EA; Sachs RK
    Life Sci Space Res (Amst); 2020 May; 25():107-118. PubMed ID: 32414484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC
    Suman S; Kumar S; Moon BH; Fornace AJ; Datta K
    Life Sci Space Res (Amst); 2017 May; 13():45-50. PubMed ID: 28554509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluence-related risk coefficients using the Harderian gland data as an example.
    Curtis SB; Townsend LW; Wilson JW; Powers-Risius P; Alpen EL; Fry RJ
    Adv Space Res; 1992; 12(2-3):407-16. PubMed ID: 11537038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.
    Smirnova OA; Cucinotta FA
    Life Sci Space Res (Amst); 2018 Feb; 16():76-83. PubMed ID: 29475522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential impact of bystander effects on radiation risks in a Mars mission.
    Brenner DJ; Elliston CD
    Radiat Res; 2001 Nov; 156(5 Pt 2):612-7. PubMed ID: 11604082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative modeling of carcinogenesis induced by single beams or mixtures of space radiations using targeted and non-targeted effects.
    Shuryak I; Sachs RK; Brenner DJ
    Sci Rep; 2021 Dec; 11(1):23467. PubMed ID: 34873209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced intestinal tumor multiplicity and grade in vivo after HZE exposure: mouse models for space radiation risk estimates.
    Trani D; Datta K; Doiron K; Kallakury B; Fornace AJ
    Radiat Environ Biophys; 2010 Aug; 49(3):389-96. PubMed ID: 20490531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions.
    Cucinotta FA
    Life Sci Space Res (Amst); 2024 Feb; 40():166-175. PubMed ID: 38245342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space radiation cancer risks and uncertainties for Mars missions.
    Cucinotta FA; Schimmerling W; Wilson JW; Peterson LE; Badhwar GD; Saganti PB; Dicello JF
    Radiat Res; 2001 Nov; 156(5 Pt 2):682-8. PubMed ID: 11604093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-track effects and new directions in GCR risk assessment.
    Curtis SB
    Adv Space Res; 1994; 14(10):885-94. PubMed ID: 11538039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation issues for piloted Mars mission.
    Badhwar GD; Nachtwey DS; Yang TC-H
    Adv Space Res; 1992; 12(2-3):195-200. PubMed ID: 11537008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC(1638N/+) Mice.
    Suman S; Kumar S; Moon BH; Strawn SJ; Thakor H; Fan Z; Shay JW; Fornace AJ; Datta K
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):131-138. PubMed ID: 26725728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NON-TARGETED EFFECTS LEAD TO A PARIDIGM SHIFT IN RISK ASSESSMENT FOR A MISSION TO THE EARTH'S MOON OR MARTIAN MOON PHOBOS.
    Cucinotta FA; Cacao E; Kim MY; Saganti PB
    Radiat Prot Dosimetry; 2019 May; 183(1-2):213-218. PubMed ID: 30576527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation.
    Sridharan DM; Asaithamby A; Bailey SM; Costes SV; Doetsch PW; Dynan WS; Kronenberg A; Rithidech KN; Saha J; Snijders AM; Werner E; Wiese C; Cucinotta FA; Pluth JM
    Radiat Res; 2015 Jan; 183(1):1-26. PubMed ID: 25564719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors.
    Mishra B; Lawson GW; Ripperdan R; Ortiz L; Luderer U
    Radiat Res; 2018 Aug; 190(2):142-150. PubMed ID: 29781764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.