These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 27345203)

  • 1. Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.
    Wilson JW; Slaba TC; Badavi FF; Reddell BD; Bahadori AA
    Life Sci Space Res (Amst); 2016 Jun; 9():69-76. PubMed ID: 27345203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
    Slaba TC; Wilson JW; Badavi FF; Reddell BD; Bahadori AA
    Life Sci Space Res (Amst); 2016 Jun; 9():77-83. PubMed ID: 27345204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3DHZETRN: Neutron leakage in finite objects.
    Wilson JW; Slaba TC; Badavi FF; Reddell BD; Bahadori AA
    Life Sci Space Res (Amst); 2015 Nov; 7():27-38. PubMed ID: 26553635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3DHZETRN: Shielded ICRU spherical phantom.
    Wilson JW; Slaba TC; Badavi FF; Reddell BD; Bahadori AA
    Life Sci Space Res (Amst); 2015 Jan; 4():46-61. PubMed ID: 26177620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
    Aghara SK; Sriprisan SI; Singleterry RC; Sato T
    Life Sci Space Res (Amst); 2015 Jan; 4():79-91. PubMed ID: 26177623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal shielding thickness for galactic cosmic ray environments.
    Slaba TC; Bahadori AA; Reddell BD; Singleterry RC; Clowdsley MS; Blattnig SR
    Life Sci Space Res (Amst); 2017 Feb; 12():1-15. PubMed ID: 28212703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Serber first step in 3DHZETRN-v2.1.
    Wilson JW; Werneth CM; Slaba TC; Badavi FF; Reddell BD; Bahadori AA
    Life Sci Space Res (Amst); 2020 Aug; 26():10-27. PubMed ID: 32718675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data.
    Ilić RD; Spasić-Jokić V; Belicev P; Dragović M
    Phys Med Biol; 2005 Mar; 50(5):1011-7. PubMed ID: 15798273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes.
    Pinsky LS; Wilson TL; Ferrari A; Sala P; Carminati F; Brun R
    Phys Med; 2001; 17 Suppl 1():86-9. PubMed ID: 11770544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose uncertainties for large solar particle events: input spectra variability and human geometry approximations.
    Townsend LW; Zapp EN
    Radiat Meas; 1999 Jun; 30(3):337-43. PubMed ID: 11543140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updated deterministic radiation transport for future deep space missions.
    Slaba TC; Wilson JW; Werneth CM; Whitman K
    Life Sci Space Res (Amst); 2020 Nov; 27():6-18. PubMed ID: 34756231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.
    Takada M; Lewis BJ; Boudreau M; Al Anid H; Bennett LG
    Radiat Prot Dosimetry; 2007; 124(4):289-318. PubMed ID: 17578874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo track structure for radiation biology and space applications.
    Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT
    Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shielding of proton accelerators.
    Agosteo S; Magistris M; Silari M
    Radiat Prot Dosimetry; 2011 Jul; 146(4):414-24. PubMed ID: 21672935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A commentary on the impact of modelling results to inform mission planning and shield design.
    El-Jaby S; Lewis BJ; Tomi L
    Life Sci Space Res (Amst); 2020 May; 25():148-150. PubMed ID: 32414489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of radiation exposure at high altitudes during solar storms.
    Al Anid H; Lewis BJ; Bennett LG; Takada M
    Radiat Prot Dosimetry; 2009 Oct; 136(4):311-6. PubMed ID: 19608577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fano cavity test for Monte Carlo proton transport algorithms.
    Sterpin E; Sorriaux J; Souris K; Vynckier S; Bouchard H
    Med Phys; 2014 Jan; 41(1):011706. PubMed ID: 24387498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.