These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 27345210)
1. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents. Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210 [TBL] [Abstract][Full Text] [Related]
2. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography. Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254 [TBL] [Abstract][Full Text] [Related]
3. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516 [TBL] [Abstract][Full Text] [Related]
4. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related]
5. Simulation of elution profiles in liquid chromatography - IV: Experimental characterization and modeling of solute injection profiles from a modulation valve used in two-dimensional liquid chromatography. Weatherbee SL; Brau T; Stoll DR; Rutan SC; Collinson MM J Chromatogr A; 2020 Aug; 1626():461373. PubMed ID: 32797851 [TBL] [Abstract][Full Text] [Related]
6. Alternative sample-introduction technique to avoid breakthrough in gradient-elution liquid chromatography of polymers. Reingruber E; Bedani F; Buchberger W; Schoenmakers P J Chromatogr A; 2010 Oct; 1217(42):6595-8. PubMed ID: 20822772 [TBL] [Abstract][Full Text] [Related]
7. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography. Baczek T; Kaliszan R J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971 [TBL] [Abstract][Full Text] [Related]
8. Effects of pH mismatch between the two dimensions of reversed-phase×reversed-phase two-dimensional separations on second dimension separation quality for ionogenic compounds-I. Carboxylic acids. Stoll DR; O'Neill K; Harmes DC J Chromatogr A; 2015 Feb; 1383():25-34. PubMed ID: 25630771 [TBL] [Abstract][Full Text] [Related]
9. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients. Jeong LN; Rutan SC J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121 [TBL] [Abstract][Full Text] [Related]
10. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. Groskreutz SR; Weber SG J Chromatogr A; 2016 Nov; 1474():95-108. PubMed ID: 27836226 [TBL] [Abstract][Full Text] [Related]
11. Peak dispersion in gradient elution: An insight based on the plate model. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158 [TBL] [Abstract][Full Text] [Related]
12. Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography. Groskreutz SR; Weber SG J Chromatogr A; 2014 Aug; 1354():65-74. PubMed ID: 24973805 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the effects of solvent-mismatch and immiscibility in normal-phase × aqueous reversed-phase liquid chromatography. Groeneveld G; Dunkle MN; Pursch M; Mes EPC; Schoenmakers PJ; Gargano AFG J Chromatogr A; 2022 Feb; 1665():462818. PubMed ID: 35092876 [TBL] [Abstract][Full Text] [Related]
14. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
15. Understanding the importance of the viscosity contrast between the sample solvent plug and the mobile phase and its potential consequence in two-dimensional high-performance liquid chromatography. Shalliker RA; Guiochon G J Chromatogr A; 2009 Jan; 1216(5):787-93. PubMed ID: 19095236 [TBL] [Abstract][Full Text] [Related]
16. Comparison of methods for extracting linear solvent strength gradient parameters from gradient chromatographic data. Ford JC; Ko J J Chromatogr A; 1996 Mar; 727(1):1-11. PubMed ID: 8900962 [TBL] [Abstract][Full Text] [Related]
17. Analytical solutions of the ideal model for gradient liquid chromatography. Hao W; Zhang X; Hou K Anal Chem; 2006 Nov; 78(22):7828-40. PubMed ID: 17105177 [TBL] [Abstract][Full Text] [Related]
18. Using the fundamentals of adsorption to understand peak distortion due to strong solvent effect in hydrophilic interaction chromatography. Gritti F; Sehajpal J; Fairchild J J Chromatogr A; 2017 Mar; 1489():95-106. PubMed ID: 28193468 [TBL] [Abstract][Full Text] [Related]
19. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
20. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing. Groskreutz SR; Horner AR; Weber SG J Chromatogr A; 2015 Jul; 1405():133-9. PubMed ID: 26091787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]