These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 27345377)
1. Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. Yu Y; Cao Y; Xia Y; Liu F J Invertebr Pathol; 2016 Sep; 139():19-24. PubMed ID: 27345377 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
3. Construction and preliminary analysis of a normalized cDNA library from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum. Wang J; Xia Y J Insect Physiol; 2010 Aug; 56(8):998-1002. PubMed ID: 20470782 [TBL] [Abstract][Full Text] [Related]
4. Locust cellular defense against infections: sites of pathogen clearance and hemocyte proliferation. Duressa TF; Vanlaer R; Huybrechts R Dev Comp Immunol; 2015 Jan; 48(1):244-53. PubMed ID: 25281274 [TBL] [Abstract][Full Text] [Related]
5. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
6. Behavioral thermoregulation in Locusta migratoria manilensis (Orthoptera: Acrididae) in response to the entomopathogenic fungus, Beauveria bassiana. Sangbaramou R; Camara I; Huang XZ; Shen J; Tan SQ; Shi WP PLoS One; 2018; 13(11):e0206816. PubMed ID: 30485309 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. Ouedraogo RM; Cusson M; Goettel MS; Brodeur J J Invertebr Pathol; 2003 Feb; 82(2):103-9. PubMed ID: 12623310 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the hemocytes in Larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. Kwon H; Bang K; Cho S PLoS One; 2014; 9(8):e103620. PubMed ID: 25083702 [TBL] [Abstract][Full Text] [Related]
9. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae. Wang C; Cao Y; Wang Z; Yin Y; Peng G; Li Z; Zhao H; Xia Y J Invertebr Pathol; 2007 Nov; 96(3):230-6. PubMed ID: 17658547 [TBL] [Abstract][Full Text] [Related]
10. Development of primary cell cultures using hemocytes and phagocytic tissue cells of Locusta migratoria: an application for locust immunity studies. Duressa TF; Huybrechts R In Vitro Cell Dev Biol Anim; 2016 Jan; 52(1):100-6. PubMed ID: 26427710 [TBL] [Abstract][Full Text] [Related]
11. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis. Zheng X; Xia Y Dev Comp Immunol; 2012 Mar; 36(3):602-9. PubMed ID: 22062247 [TBL] [Abstract][Full Text] [Related]
12. The hemocytes of Panstrongylus megistus (Hemiptera: Reduviidae). Barracco MA; De Oliveira R; Schlemper Júnior B Mem Inst Oswaldo Cruz; 1987; 82(3):431-8. PubMed ID: 2467168 [TBL] [Abstract][Full Text] [Related]
13. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
14. Losing the battle against fungal infection: suppression of termite immune defenses during mycosis. Avulova S; Rosengaus RB J Insect Physiol; 2011 Jul; 57(7):966-71. PubMed ID: 21530532 [TBL] [Abstract][Full Text] [Related]
15. Hemocytes and hemocytopoiesis in Silkworms. Beaulaton J Biochimie; 1979; 61(2):157-64. PubMed ID: 465568 [TBL] [Abstract][Full Text] [Related]
16. Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L. Cao G; Jia M; Zhao X; Wang L; Tu X; Wang G; Nong X; Zhang Z PLoS One; 2016; 11(5):e0155257. PubMed ID: 27227835 [TBL] [Abstract][Full Text] [Related]
17. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related]
18. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
19. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
20. Interactions of two insect pathogens, Paranosema locustae (Protista: Microsporidia) and Metarhizium acridum (Fungi: Hypocreales), during a mixed infection of Locusta migratoria (Insecta: Orthoptera) nymphs. Tokarev YS; Levchenko MV; Naumov AM; Senderskiy IV; Lednev GR J Invertebr Pathol; 2011 Feb; 106(2):336-8. PubMed ID: 20932843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]