BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27345766)

  • 1. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography.
    Pang Y; Shu Y; Shavezipur M; Wang X; Mohammad MA; Yang Y; Zhao H; Deng N; Maboudian R; Ren TL
    Sci Rep; 2016 Jun; 6():28552. PubMed ID: 27345766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sacrificial Template Synthesis and Properties of 3D Hollow-Silicon Nano- and Microstructures.
    Hölken I; Neubüser G; Postica V; Bumke L; Lupan O; Baum M; Mishra YK; Kienle L; Adelung R
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20491-8. PubMed ID: 27428091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.
    Do TN; Visell Y
    Sci Rep; 2017 May; 7(1):1753. PubMed ID: 28496101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication.
    Song SH; Kim K; Choi SE; Han S; Lee HS; Kwon S; Park W
    Opt Lett; 2014 Sep; 39(17):5162-5. PubMed ID: 25166099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates.
    Yoo D; Johnson TW; Cherukulappurath S; Norris DJ; Oh SH
    ACS Nano; 2015 Nov; 9(11):10647-54. PubMed ID: 26402066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing.
    Li K; Wei H; Liu W; Meng H; Zhang P; Yan C
    Nanotechnology; 2018 May; 29(18):185501. PubMed ID: 29446761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching.
    Choi I; Kim Y; Yi J
    Ultramicroscopy; 2008 Sep; 108(10):1205-9. PubMed ID: 18583055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment.
    Liao Y; Li W; Zhan Z; Duan H; Liu P; Chen Y; Wang Z
    ACS Omega; 2021 Jul; 6(28):18281-18288. PubMed ID: 34308059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Tapered 3D Microstructure Arrays Using Dual-Exposure Lithography (DEL).
    Rengarajan V; Geng J; Huang Y
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33003512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable silicon nanoribbon electronics for skin prosthesis.
    Kim J; Lee M; Shim HJ; Ghaffari R; Cho HR; Son D; Jung YH; Soh M; Choi C; Jung S; Chu K; Jeon D; Lee ST; Kim JH; Choi SH; Hyeon T; Kim DH
    Nat Commun; 2014 Dec; 5():5747. PubMed ID: 25490072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Fabrication of High-Performance Ionic Polymer-Metal Composite Flexible Sensors by in Situ Plasma Etching and Magnetron Sputtering.
    Fu R; Yang Y; Lu C; Ming Y; Zhao X; Hu Y; Zhao L; Hao J; Chen W
    ACS Omega; 2018 Aug; 3(8):9146-9154. PubMed ID: 31459048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process.
    Bian H; Yang Q; Chen F; Liu H; Du G; Deng Z; Si J; Yun F; Hou X
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2795-9. PubMed ID: 23623098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors.
    Bathaei MJ; Singh R; Mirzajani H; Istif E; Akhtar MJ; Abbasiasl T; Beker L
    Adv Mater; 2023 Feb; 35(6):e2207081. PubMed ID: 36401580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors.
    Araromi OA; Rosset S; Shea HR
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18046-53. PubMed ID: 26197865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic stretchable RF electronics.
    Cheng S; Wu Z
    Lab Chip; 2010 Dec; 10(23):3227-34. PubMed ID: 20877884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.
    Park JJ; Hyun WJ; Mun SC; Park YT; Park OO
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6317-24. PubMed ID: 25735398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
    Abdul Hamid ISL; Khi Khim B; Sal Hamid S; Abd Rahman MF; Abd Manaf A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32485795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.
    Du K; Ding J; Wathuthanthri I; Choi CH
    Nanotechnology; 2017 Nov; 28(46):465303. PubMed ID: 28914234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.