These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27346635)

  • 1. Use of nanocellulose in printed electronics: a review.
    Hoeng F; Denneulin A; Bras J
    Nanoscale; 2016 Jul; 8(27):13131-54. PubMed ID: 27346635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review.
    Agate S; Joyce M; Lucia L; Pal L
    Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films.
    Hu D; Ma W; Zhang Z; Ding Y; Wu L
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11115-11125. PubMed ID: 32049475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic nanomaterials for printed electronics: a review.
    Wu W
    Nanoscale; 2017 Jun; 9(22):7342-7372. PubMed ID: 28548146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors.
    Chen X; Wang X; Pang Y; Bao G; Jiang J; Yang P; Chen Y; Rao T; Liao W
    Small Methods; 2023 Feb; 7(2):e2201156. PubMed ID: 36610015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices.
    Song J; Zeng H
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):9760-74. PubMed ID: 26223702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive nanomaterials for 2D and 3D printed flexible electronics.
    Kamyshny A; Magdassi S
    Chem Soc Rev; 2019 Mar; 48(6):1712-1740. PubMed ID: 30569917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
    Jia C; Bian H; Gao T; Jiang F; Kierzewski IM; Wang Y; Yao Y; Chen L; Shao Z; Zhu JY; Hu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28922-28929. PubMed ID: 28766931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printed flexible and transparent electronics: enhancing low-temperature processed metal oxides with 0D and 1D nanomaterials.
    Scheideler W; Subramanian V
    Nanotechnology; 2019 Jul; 30(27):272001. PubMed ID: 30893670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Nanocellulose Printed Circuit Boards for Medical Sensing.
    Yuen JD; Shriver-Lake LC; Walper SA; Zabetakis D; Breger JC; Stenger DA
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices.
    Dias OAT; Konar S; Leão AL; Yang W; Tjong J; Sain M
    Front Chem; 2020; 8():420. PubMed ID: 32528931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices.
    Fingolo AC; de Morais VB; Costa SV; Corrêa CC; Lodi B; Santhiago M; Bernardes JS; Bufon CCB
    ACS Appl Bio Mater; 2021 Sep; 4(9):6682-6689. PubMed ID: 35006971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.
    Secor EB; Gao TZ; Dos Santos MH; Wallace SG; Putz KW; Hersam MC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29418-29423. PubMed ID: 28820238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in nanocellulose pretreatment routes, developments, applications and future prospects: A state-of-the-art review.
    Arivendan A; Chen X; Zhang YF; Gao W
    Int J Biol Macromol; 2024 Nov; 281(Pt 2):135925. PubMed ID: 39414533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-Directed Crystallization for Printed Electronics.
    Qu G; Kwok JJ; Diao Y
    Acc Chem Res; 2016 Dec; 49(12):2756-2764. PubMed ID: 27993010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns.
    Biswas SK; Tanpichai S; Witayakran S; Yang X; Shams MI; Yano H
    ACS Nano; 2019 Feb; 13(2):2015-2023. PubMed ID: 30698942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.