These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27346635)

  • 21. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review.
    Tayeb P; H Tayeb A
    Carbohydr Polym; 2019 Nov; 224():115149. PubMed ID: 31472850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optically Transparent Multiscale Composite Films for Flexible and Wearable Electronics.
    Lim YW; Jin J; Bae BS
    Adv Mater; 2020 Sep; 32(35):e1907143. PubMed ID: 32187405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-Modified Substrates for Quantum Dot Inks in Printed Electronics.
    Meng L; Zeng T; Jin Y; Xu Q; Wang X
    ACS Omega; 2019 Feb; 4(2):4161-4168. PubMed ID: 31459625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screen printed passive components for flexible power electronics.
    Ostfeld AE; Deckman I; Gaikwad AM; Lochner CM; Arias AC
    Sci Rep; 2015 Oct; 5():15959. PubMed ID: 26514331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates.
    Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C
    ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible and Green Electronics Manufactured by Origami Folding of Nanosilicate-Reinforced Cellulose Paper.
    Kadumudi FB; Trifol J; Jahanshahi M; Zsurzsan TG; Mehrali M; Zeqiraj E; Shaki H; Alehosseini M; Gundlach C; Li Q; Dong M; Akbari M; Knott A; Almdal K; Dolatshahi-Pirouz A
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48027-48039. PubMed ID: 33035422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle composites for printed electronics.
    Männl U; van den Berg C; Magunje B; Härting M; Britton DT; Jones S; van Staden MJ; Scriba MR
    Nanotechnology; 2014 Mar; 25(9):094004. PubMed ID: 24521927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring metal oxide nanoparticle dispersions for inkjet printing.
    Gebauer JS; Mackert V; Ognjanović S; Winterer M
    J Colloid Interface Sci; 2018 Sep; 526():400-409. PubMed ID: 29758409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services.
    Aliaga C; Zhang H; Dobon A; Hortal M; Beneventi D
    Waste Manag; 2015 Apr; 38():41-8. PubMed ID: 25649917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey.
    Bencurova E; Chinazzo A; Kar B; Jung M; Dandekar T
    Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components.
    Luo Q; Shen H; Zhou G; Xu X
    Carbohydr Polym; 2023 Mar; 303():120449. PubMed ID: 36657840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers.
    Seydibeyoğlu MÖ; Dogru A; Wang J; Rencheck M; Han Y; Wang L; Seydibeyoğlu EA; Zhao X; Ong K; Shatkin JA; Shams Es-Haghi S; Bhandari S; Ozcan S; Gardner DJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.
    Chen W; Yu H; Lee SY; Wei T; Li J; Fan Z
    Chem Soc Rev; 2018 Apr; 47(8):2837-2872. PubMed ID: 29561005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects.
    Ee LY; Yau Li SF
    Nanoscale Adv; 2021 Mar; 3(5):1167-1208. PubMed ID: 36132876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose.
    Charreau H; Foresti ML; Vazquez A
    Recent Pat Nanotechnol; 2013 Jan; 7(1):56-80. PubMed ID: 22747719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.