BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27346677)

  • 1. Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp(2) -Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries.
    Hung TF; Cheng WJ; Chang WS; Yang CC; Shen CC; Kuo YL
    Chemistry; 2016 Jul; 22(30):10620-6. PubMed ID: 27346677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.
    Peng M; Li B; Yan H; Zhang D; Wang X; Xia D; Guo G
    Angew Chem Int Ed Engl; 2015 May; 54(22):6452-6. PubMed ID: 25864686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Superior Na3 V2 (PO4 )3 -Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries.
    Guo JZ; Wu XL; Wan F; Wang J; Zhang XH; Wang RS
    Chemistry; 2015 Nov; 21(48):17371-8. PubMed ID: 26481446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Electrochemically-Reversible Mesoporous Na
    Zhang J; Zhou X; Wang Y; Qian J; Zhong F; Feng X; Chen W; Ai X; Yang H; Cao Y
    Small; 2019 Nov; 15(46):e1903723. PubMed ID: 31577385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed One-Pot Strategy for Dual-Carbon-Protected Na
    Li J; Peng B; Li Y; Yu L; Wang G; Shi L; Zhang G
    Chemistry; 2019 Oct; 25(57):13094-13098. PubMed ID: 31298763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries.
    Shen B; Xu M; Niu Y; Han J; Lu S; Jiang J; Li Y; Dai C; Hu L; Li C
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):502-508. PubMed ID: 29231706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium Rich Vanadium Oxy-Fluorophosphate - Na
    Essehli R; Yahia HB; Amin R; Li M; Morales D; Greenbaum SG; Abouimrane A; Parejiya A; Mahmoud A; Boulahya K; Dixit M; Belharouak I
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301091. PubMed ID: 37202659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium-Ion Batteries.
    Wang MY; Guo JZ; Wang ZW; Gu ZY; Nie XJ; Yang X; Wu XL
    Small; 2020 Apr; 16(16):e1907645. PubMed ID: 32141157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na
    Kretschmer K; Sun B; Zhang J; Xie X; Liu H; Wang G
    Small; 2017 Mar; 13(9):. PubMed ID: 28001326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties.
    Kajiyama S; Kikkawa J; Hoshino J; Okubo M; Hosono E
    Chemistry; 2014 Sep; 20(39):12636-40. PubMed ID: 25123497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluorophosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries.
    Liu K; Lei P; Wan X; Zheng W; Xiang X
    J Colloid Interface Sci; 2018 Dec; 532():426-432. PubMed ID: 30099306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Rate Capability and Enhanced Cyclability of Na
    Zhao J; Gao Y; Liu Q; Meng X; Chen N; Wang C; Du F; Chen G
    Chemistry; 2018 Feb; 24(12):2913-2919. PubMed ID: 29266446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Evaluation of F-doped Polyanion Cathode Materials with Long Cycle Life for Na-Ion Batteries Applications.
    Muruganantham R; Chiu YT; Yang CC; Wang CW; Liu WR
    Sci Rep; 2017 Nov; 7(1):14808. PubMed ID: 29093535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode.
    Sun D; Tang Y; He K; Ren Y; Liu S; Wang H
    Sci Rep; 2015 Dec; 5():17452. PubMed ID: 26648263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Scaffolded Na
    Zhang J; Fang Y; Xiao L; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7177-7184. PubMed ID: 28186395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Promising High-Voltage Cathode Material Based on Mesoporous Na
    Zeng J; Yang Y; Lai S; Huang J; Zhang Y; Wang J; Zhao J
    Chemistry; 2017 Nov; 23(66):16898-16905. PubMed ID: 28960575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Green and Scalable Synthesis of Na
    Wang H; Pan Z; Zhang H; Dong C; Ding Y; Cao Y; Chen Z
    Small Methods; 2021 Aug; 5(8):e2100372. PubMed ID: 34927871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A NaV
    Ke L; Dong J; Lin B; Yu T; Wang H; Zhang S; Deng C
    Nanoscale; 2017 Mar; 9(12):4183-4190. PubMed ID: 28287220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode.
    Sun D; Jiang Y; Wang H; Yao Y; Xu G; He K; Liu S; Tang Y; Liu Y; Huang X
    Sci Rep; 2015 Jun; 5():10733. PubMed ID: 26035774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.