These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 27346845)
1. Acute inhalation toxicity of carbon monoxide and hydrogen cyanide revisited: Comparison of models to disentangle the concentration × time conundrum of lethality and incapacitation. Pauluhn J Regul Toxicol Pharmacol; 2016 Oct; 80():173-82. PubMed ID: 27346845 [TBL] [Abstract][Full Text] [Related]
2. Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity? Pauluhn J Toxicol Lett; 2016 Nov; 262():142-152. PubMed ID: 27664840 [TBL] [Abstract][Full Text] [Related]
3. Estimation of time to compromised tenability in fires: is it time to change paradigms? Pauluhn J Regul Toxicol Pharmacol; 2020 Mar; 111():104582. PubMed ID: 31953227 [TBL] [Abstract][Full Text] [Related]
4. Exposures to carbon monoxide, hydrogen cyanide and their mixtures: interrelationship between gas exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide in rats. Chaturvedi AK; Sanders DC; Endecott BR; Ritter RM J Appl Toxicol; 1995; 15(5):357-63. PubMed ID: 8666718 [TBL] [Abstract][Full Text] [Related]
5. Acute inhalation toxicity of ammonia: revisiting the importance of RD50 and LCT01/50 relationships for setting emergency response guideline values. Pauluhn J Regul Toxicol Pharmacol; 2013 Aug; 66(3):315-25. PubMed ID: 23707397 [TBL] [Abstract][Full Text] [Related]
6. Acute toxicity when concentration varies with time: A case study with carbon monoxide inhalation by rats. Sweeney LM; Sommerville DR; Goodwin MR; James RA; Channel SR Regul Toxicol Pharmacol; 2016 Oct; 80():102-15. PubMed ID: 27321061 [TBL] [Abstract][Full Text] [Related]
7. Development of a hydrogen cyanide inhalation exposure system and determination of the inhaled median lethal dose in the swine model. Staugler JM; Babin MC; Matthews MC; Brittain MK; Perry MR Inhal Toxicol; 2018; 30(4-5):195-202. PubMed ID: 30198803 [TBL] [Abstract][Full Text] [Related]
8. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide. Sweeney LM; Sommerville DR; Channel SR Toxicol Sci; 2014 Mar; 138(1):205-16. PubMed ID: 24336460 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the validity and applicable domain of the toxic load model: impact of concentration vs. time profile on inhalation lethality of hydrogen cyanide. Sweeney LM; Sommerville DR; Channel SR; Sharits BC; Gargas NM; Gut CP Regul Toxicol Pharmacol; 2015 Apr; 71(3):571-84. PubMed ID: 25720732 [TBL] [Abstract][Full Text] [Related]
10. An internal dose model of incapacitation and lethality risk from inhalation of fire gases. Stuhmiller JH; Long DW; Stuhmiller LM Inhal Toxicol; 2006 May; 18(5):347-64. PubMed ID: 16513593 [TBL] [Abstract][Full Text] [Related]
11. A global initiative to refine acute inhalation studies through the use of 'evident toxicity' as an endpoint: Towards adoption of the fixed concentration procedure. Sewell F; Ragan I; Marczylo T; Anderson B; Braun A; Casey W; Dennison N; Griffiths D; Guest R; Holmes T; van Huygevoort T; Indans I; Kenny T; Kojima H; Lee K; Prieto P; Smith P; Smedley J; Stokes WS; Wnorowski G; Horgan G Regul Toxicol Pharmacol; 2015 Dec; 73(3):770-9. PubMed ID: 26505531 [TBL] [Abstract][Full Text] [Related]
12. Carbon monoxide neurotoxicity: transient inhibition of avoidance response and delayed microglia reaction in the absence of neuronal death. Brunssen SH; Morgan DL; Parham FM; Harry GJ Toxicology; 2003 Dec; 194(1-2):51-63. PubMed ID: 14636696 [TBL] [Abstract][Full Text] [Related]
13. Concentration × time analyses of sensory irritants revisited: Weight of evidence or the toxic load approach. That is the question. Pauluhn J Toxicol Lett; 2019 Nov; 316():94-108. PubMed ID: 31499141 [TBL] [Abstract][Full Text] [Related]
14. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires. Levin BC; Paabo M; Gurman JL; Harris SE Fundam Appl Toxicol; 1987 Aug; 9(2):236-50. PubMed ID: 2820822 [TBL] [Abstract][Full Text] [Related]
15. User-oriented independent analysis of the toxic load model's ability to predict the effects of time-varying toxic inhalation exposures. Slawik A; Platt N; Urban JT Regul Toxicol Pharmacol; 2019 Aug; 106():27-42. PubMed ID: 30978368 [TBL] [Abstract][Full Text] [Related]
16. A study on the combined action of CO and HCN in terms of concentration-time products. Yamamoto K; Kuwahara C Z Rechtsmed; 1981; 86(4):287-94. PubMed ID: 6266175 [TBL] [Abstract][Full Text] [Related]
17. Carboxyhemoglobin and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke. Scherer G Exp Toxicol Pathol; 2006 Nov; 58(2-3):101-24. PubMed ID: 16973339 [TBL] [Abstract][Full Text] [Related]
18. Assessment of carboxyhemoglobin, hydrogen cyanide and methemoglobin in fire victims: a novel approach. Ferrari LA; Giannuzzi L Forensic Sci Int; 2015 Nov; 256():46-52. PubMed ID: 26426954 [TBL] [Abstract][Full Text] [Related]
19. Prevalence of hydrogen cyanide and carboxyhaemoglobin in victims of smoke inhalation during enclosed-space fires: a combined toxicological risk. Grabowska T; Skowronek R; Nowicka J; Sybirska H Clin Toxicol (Phila); 2012 Sep; 50(8):759-63. PubMed ID: 22882141 [TBL] [Abstract][Full Text] [Related]
20. In vitro absorption of atmospheric carbon monoxide and hydrogen cyanide in undisturbed pooled blood. Thoren TM; Thompson KS; Cardona PS; Chaturvedi AK; Canfield DV J Anal Toxicol; 2013 May; 37(4):203-7. PubMed ID: 23482499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]