BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27346845)

  • 1. Acute inhalation toxicity of carbon monoxide and hydrogen cyanide revisited: Comparison of models to disentangle the concentration × time conundrum of lethality and incapacitation.
    Pauluhn J
    Regul Toxicol Pharmacol; 2016 Oct; 80():173-82. PubMed ID: 27346845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity?
    Pauluhn J
    Toxicol Lett; 2016 Nov; 262():142-152. PubMed ID: 27664840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of time to compromised tenability in fires: is it time to change paradigms?
    Pauluhn J
    Regul Toxicol Pharmacol; 2020 Mar; 111():104582. PubMed ID: 31953227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposures to carbon monoxide, hydrogen cyanide and their mixtures: interrelationship between gas exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide in rats.
    Chaturvedi AK; Sanders DC; Endecott BR; Ritter RM
    J Appl Toxicol; 1995; 15(5):357-63. PubMed ID: 8666718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute inhalation toxicity of ammonia: revisiting the importance of RD50 and LCT01/50 relationships for setting emergency response guideline values.
    Pauluhn J
    Regul Toxicol Pharmacol; 2013 Aug; 66(3):315-25. PubMed ID: 23707397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute toxicity when concentration varies with time: A case study with carbon monoxide inhalation by rats.
    Sweeney LM; Sommerville DR; Goodwin MR; James RA; Channel SR
    Regul Toxicol Pharmacol; 2016 Oct; 80():102-15. PubMed ID: 27321061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a hydrogen cyanide inhalation exposure system and determination of the inhaled median lethal dose in the swine model.
    Staugler JM; Babin MC; Matthews MC; Brittain MK; Perry MR
    Inhal Toxicol; 2018; 30(4-5):195-202. PubMed ID: 30198803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.
    Sweeney LM; Sommerville DR; Channel SR
    Toxicol Sci; 2014 Mar; 138(1):205-16. PubMed ID: 24336460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the validity and applicable domain of the toxic load model: impact of concentration vs. time profile on inhalation lethality of hydrogen cyanide.
    Sweeney LM; Sommerville DR; Channel SR; Sharits BC; Gargas NM; Gut CP
    Regul Toxicol Pharmacol; 2015 Apr; 71(3):571-84. PubMed ID: 25720732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An internal dose model of incapacitation and lethality risk from inhalation of fire gases.
    Stuhmiller JH; Long DW; Stuhmiller LM
    Inhal Toxicol; 2006 May; 18(5):347-64. PubMed ID: 16513593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global initiative to refine acute inhalation studies through the use of 'evident toxicity' as an endpoint: Towards adoption of the fixed concentration procedure.
    Sewell F; Ragan I; Marczylo T; Anderson B; Braun A; Casey W; Dennison N; Griffiths D; Guest R; Holmes T; van Huygevoort T; Indans I; Kenny T; Kojima H; Lee K; Prieto P; Smith P; Smedley J; Stokes WS; Wnorowski G; Horgan G
    Regul Toxicol Pharmacol; 2015 Dec; 73(3):770-9. PubMed ID: 26505531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide neurotoxicity: transient inhibition of avoidance response and delayed microglia reaction in the absence of neuronal death.
    Brunssen SH; Morgan DL; Parham FM; Harry GJ
    Toxicology; 2003 Dec; 194(1-2):51-63. PubMed ID: 14636696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration × time analyses of sensory irritants revisited: Weight of evidence or the toxic load approach. That is the question.
    Pauluhn J
    Toxicol Lett; 2019 Nov; 316():94-108. PubMed ID: 31499141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires.
    Levin BC; Paabo M; Gurman JL; Harris SE
    Fundam Appl Toxicol; 1987 Aug; 9(2):236-50. PubMed ID: 2820822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. User-oriented independent analysis of the toxic load model's ability to predict the effects of time-varying toxic inhalation exposures.
    Slawik A; Platt N; Urban JT
    Regul Toxicol Pharmacol; 2019 Aug; 106():27-42. PubMed ID: 30978368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the combined action of CO and HCN in terms of concentration-time products.
    Yamamoto K; Kuwahara C
    Z Rechtsmed; 1981; 86(4):287-94. PubMed ID: 6266175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyhemoglobin and thiocyanate as biomarkers of exposure to carbon monoxide and hydrogen cyanide in tobacco smoke.
    Scherer G
    Exp Toxicol Pathol; 2006 Nov; 58(2-3):101-24. PubMed ID: 16973339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of carboxyhemoglobin, hydrogen cyanide and methemoglobin in fire victims: a novel approach.
    Ferrari LA; Giannuzzi L
    Forensic Sci Int; 2015 Nov; 256():46-52. PubMed ID: 26426954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of hydrogen cyanide and carboxyhaemoglobin in victims of smoke inhalation during enclosed-space fires: a combined toxicological risk.
    Grabowska T; Skowronek R; Nowicka J; Sybirska H
    Clin Toxicol (Phila); 2012 Sep; 50(8):759-63. PubMed ID: 22882141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro absorption of atmospheric carbon monoxide and hydrogen cyanide in undisturbed pooled blood.
    Thoren TM; Thompson KS; Cardona PS; Chaturvedi AK; Canfield DV
    J Anal Toxicol; 2013 May; 37(4):203-7. PubMed ID: 23482499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.