BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27347367)

  • 1. Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds.
    Andorfer MC; Park HJ; Vergara-Coll J; Lewis JC
    Chem Sci; 2016 Jun; 7(6):3720-3729. PubMed ID: 27347367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
    Payne JT; Poor CB; Lewis JC
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4226-30. PubMed ID: 25678465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity.
    Andorfer MC; Evans D; Yang S; He CQ; Girlich AM; Vergara-Coll J; Sukumar N; Houk KN; Lewis JC
    Chem Catal; 2022 Oct; 2(10):2658-2674. PubMed ID: 36569427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds.
    Sana B; Ho T; Kannan S; Ke D; Li EHY; Seayad J; Verma CS; Duong HA; Ghadessy FJ
    Chembiochem; 2021 Sep; 22(18):2791-2798. PubMed ID: 34240527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
    Poor CB; Andorfer MC; Lewis JC
    Chembiochem; 2014 Jun; 15(9):1286-9. PubMed ID: 24849696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
    Glenn WS; Nims E; O'Connor SE
    J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed Evolution of Flavin-Dependent Halogenases for Site- and Atroposelective Halogenation of 3-Aryl-4(3
    Snodgrass HM; Mondal D; Lewis JC
    J Am Chem Soc; 2022 Sep; 144(36):16676-16682. PubMed ID: 36044712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis.
    Yeh E; Garneau S; Walsh CT
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):3960-5. PubMed ID: 15743914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indole and azaindole halogenation catalyzed by the RebH enzyme variant 3-LSR utilizing co-purified
    Li EHY; Sana B; Ho T; Ke D; Ghadessy FJ; Duong HA; Seayad J
    Front Bioeng Biotechnol; 2022; 10():1032707. PubMed ID: 36588932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound.
    Hayashi T; Ligibel M; Sager E; Voss M; Hunziker J; Schroer K; Snajdrova R; Buller R
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18535-18539. PubMed ID: 31589798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases.
    Buedenbender S; Rachid S; Müller R; Schulz GE
    J Mol Biol; 2009 Jan; 385(2):520-30. PubMed ID: 19000696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis.
    Andorfer MC; Lewis JC
    Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation.
    Payne JT; Butkovich PH; Gu Y; Kunze KN; Park HJ; Wang DS; Lewis JC
    J Am Chem Soc; 2018 Jan; 140(2):546-549. PubMed ID: 29294291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective C-H bond functionalization using repurposed or artificial metalloenzymes.
    Upp DM; Lewis JC
    Curr Opin Chem Biol; 2017 Apr; 37():48-55. PubMed ID: 28135654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-Based Screens for Engineering Enzymes Linked to Halogenated Tryptophan.
    Reed KB; d'Oelsnitz S; Brooks SM; Wells J; Zhao M; Trivedi A; Eshraghi S; Alper HS
    ACS Synth Biol; 2024 Apr; 13(4):1373-1381. PubMed ID: 38533851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation.
    Schnepel C; Sewald N
    Chemistry; 2017 Sep; 23(50):12064-12086. PubMed ID: 28464370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.