These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27347703)

  • 1. Metabolite profiling and enzyme reaction phenotyping of luseogliflozin, a sodium-glucose cotransporter 2 inhibitor, in humans.
    Miyata A; Hasegawa M; Hachiuma K; Mori H; Horiuchi N; Mizuno-Yasuhira A; Chino Y; Jingu S; Sakai S; Samukawa Y; Nakai Y; Yamaguchi JI
    Xenobiotica; 2017 Apr; 47(4):332-345. PubMed ID: 27347703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical metabolism and disposition of luseogliflozin, a novel antihyperglycemic agent.
    Hasegawa M; Chino Y; Horiuchi N; Hachiuma K; Ishida M; Fukasawa Y; Nakai Y; Yamaguchi J
    Xenobiotica; 2015; 45(12):1105-15. PubMed ID: 26489961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cytochrome P450 and UDP-glucuronosyltransferases in metabolic pathway of homoegonol in human liver microsomes.
    Kwon SS; Kim JH; Jeong HU; Ahn KS; Oh SR; Lee HS
    Drug Metab Pharmacokinet; 2015 Aug; 30(4):305-13. PubMed ID: 26163112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of potential drug interactions mediated by cytochrome P450 and transporters for luseogliflozin, an SGLT2 inhibitor.
    Chino Y; Hasegawa M; Fukasawa Y; Mano Y; Bando K; Miyata A; Nakai Y; Endo H; Yamaguchi JI
    Xenobiotica; 2017 Apr; 47(4):314-323. PubMed ID: 27324291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.
    Zhang D; Wang L; Chandrasena G; Ma L; Zhu M; Zhang H; Davis CD; Humphreys WG
    Drug Metab Dispos; 2007 Jan; 35(1):139-49. PubMed ID: 17062778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct comparison of UDP-glucuronosyltransferase and cytochrome P450 activities in human liver microsomes, plated and suspended primary human hepatocytes from five liver donors.
    den Braver-Sewradj SP; den Braver MW; Baze A; Decorde J; Fonsi M; Bachellier P; Vermeulen NPE; Commandeur JNM; Richert L; Vos JC
    Eur J Pharm Sci; 2017 Nov; 109():96-110. PubMed ID: 28778465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: metabolite elucidation and main contributions from CYP1A2 and UGT1A1.
    Lu D; Ma Z; Zhang T; Zhang X; Wu B
    Xenobiotica; 2016; 46(1):1-13. PubMed ID: 26068521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative demethylenation and subsequent glucuronidation are the major metabolic pathways of berberine in rats.
    Liu Y; Hao H; Xie H; Lv H; Liu C; Wang G
    J Pharm Sci; 2009 Nov; 98(11):4391-401. PubMed ID: 19283771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of the metabolic pathways and cytochrome P450 inhibition and induction potential of BMS-690514, an ErbB/vascular endothelial growth factor receptor inhibitor.
    Hong H; Su H; Ma L; Yao M; Iyer RA; Humphreys WG; Christopher LJ
    Drug Metab Dispos; 2011 Sep; 39(9):1658-67. PubMed ID: 21673131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation.
    Butler AM; Murray M
    J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolism of the anti-inflammatory clerodane diterpenoid polyandric acid A and its hydrolysis product by human liver microsomes and recombinant cytochrome P450 and UDP-glucuronosyltransferase enzymes.
    Bendikov MY; Miners JO; Simpson BS; Elliot DJ; Semple SJ; Claudie DJ; McKinnon RA; Gillam EMJ; Sykes MJ
    Xenobiotica; 2017 Jun; 47(6):461-469. PubMed ID: 27412850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Kinetic Characterization of Axitinib Metabolism.
    Zientek MA; Goosen TC; Tseng E; Lin J; Bauman JN; Walker GS; Kang P; Jiang Y; Freiwald S; Neul D; Smith BJ
    Drug Metab Dispos; 2016 Jan; 44(1):102-14. PubMed ID: 26512042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies.
    Wang L; Zhang D; Raghavan N; Yao M; Ma L; Frost CE; Maxwell BD; Chen SY; He K; Goosen TC; Humphreys WG; Grossman SJ
    Drug Metab Dispos; 2010 Mar; 38(3):448-58. PubMed ID: 19940026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of human liver cytochrome P450 enzymes involved in biotransformation of vicriviroc, a CCR5 receptor antagonist.
    Ghosal A; Ramanathan R; Yuan Y; Hapangama N; Chowdhury SK; Kishnani NS; Alton KB
    Drug Metab Dispos; 2007 Dec; 35(12):2186-95. PubMed ID: 17827338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro metabolism of jaceosidin and characterization of cytochrome P450 and UDP-glucuronosyltransferase enzymes in human liver microsomes.
    Song WY; Ji HY; Baek NI; Jeong TS; Lee HS
    Arch Pharm Res; 2010 Dec; 33(12):1985-96. PubMed ID: 21191764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride.
    Huskey SW; Dean DC; Miller RR; Rasmusson GH; Chiu SH
    Drug Metab Dispos; 1995 Oct; 23(10):1126-35. PubMed ID: 8654202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin.
    Yamazaki H; Shimada T
    Drug Metab Dispos; 1998 Nov; 26(11):1053-7. PubMed ID: 9806945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus.
    Kalgutkar AS; Tugnait M; Zhu T; Kimoto E; Miao Z; Mascitti V; Yang X; Tan B; Walsky RL; Chupka J; Feng B; Robinson RP
    Drug Metab Dispos; 2011 Sep; 39(9):1609-19. PubMed ID: 21690265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characterization of luseogliflozin, a potent and competitive sodium glucose co-transporter 2 inhibitor: Inhibition kinetics and binding studies.
    Uchida S; Mitani A; Gunji E; Takahashi T; Yamamoto K
    J Pharmacol Sci; 2015 May; 128(1):54-7. PubMed ID: 26003086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro glucuronidation of the primary metabolite of 10-chloromethyl-11-demethyl-12-oxo-calanolide A by human liver microsomes and its interactions with UDP-glucuronosyltransferase substrates.
    Liu X; Sheng L; Zhao M; Mi J; Liu Z; Li Y
    Drug Metab Pharmacokinet; 2015 Feb; 30(1):89-96. PubMed ID: 25760535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.