These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 27347754)

  • 41. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy.
    Gugel H; Bewersdorf J; Jakobs S; Engelhardt J; Storz R; Hell SW
    Biophys J; 2004 Dec; 87(6):4146-52. PubMed ID: 15377532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Benchmarking miniaturized microscopy against two-photon calcium imaging using single-cell orientation tuning in mouse visual cortex.
    Glas A; Hübener M; Bonhoeffer T; Goltstein PM
    PLoS One; 2019; 14(4):e0214954. PubMed ID: 30947245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High precision and fast functional mapping of cortical circuitry through a novel combination of voltage sensitive dye imaging and laser scanning photostimulation.
    Xu X; Olivas ND; Levi R; Ikrar T; Nenadic Z
    J Neurophysiol; 2010 Apr; 103(4):2301-12. PubMed ID: 20130040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
    Engelbrecht CJ; Johnston RS; Seibel EJ; Helmchen F
    Opt Express; 2008 Apr; 16(8):5556-64. PubMed ID: 18542658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography.
    Zheng T; Yang Z; Li A; Lv X; Zhou Z; Wang X; Qi X; Li S; Luo Q; Gong H; Zeng S
    Opt Express; 2013 Apr; 21(8):9839-50. PubMed ID: 23609690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing.
    Cheng A; Gonçalves JT; Golshani P; Arisaka K; Portera-Cailliau C
    Nat Methods; 2011 Feb; 8(2):139-42. PubMed ID: 21217749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.
    Chamberland S; Yang HH; Pan MM; Evans SW; Guan S; Chavarha M; Yang Y; Salesse C; Wu H; Wu JC; Clandinin TR; Toth K; Lin MZ; St-Pierre F
    Elife; 2017 Jul; 6():. PubMed ID: 28749338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Longitudinal Two-Photon Imaging of Dorsal Hippocampal CA1 in Live Mice.
    Ulivi AF; Castello-Waldow TP; Weston G; Yan L; Yasuda R; Chen A; Attardo A
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31282875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo.
    Maheswari RU; Takaoka H; Kadono H; Homma R; Tanifuji M
    J Neurosci Methods; 2003 Mar; 124(1):83-92. PubMed ID: 12648767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Second-harmonic generation imaging of membrane potential with photon counting.
    Jiang J; Yuste R
    Microsc Microanal; 2008 Dec; 14(6):526-31. PubMed ID: 18986606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Method to reconstruct neuronal action potential train from two-photon calcium imaging.
    Quan T; Liu X; Lv X; Chen WR; Zeng S
    J Biomed Opt; 2010; 15(6):066002. PubMed ID: 21198176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.
    Winter PW; Chandris P; Fischer RS; Wu Y; Waterman CM; Shroff H
    Opt Express; 2015 Feb; 23(4):5327-34. PubMed ID: 25836564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo 2-photon calcium imaging in layer 2/3 of mice.
    Golshani P; Portera-Cailliau C
    J Vis Exp; 2008 Mar; (13):. PubMed ID: 19066575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultra-large field-of-view two-photon microscopy.
    Tsai PS; Mateo C; Field JJ; Schaffer CB; Anderson ME; Kleinfeld D
    Opt Express; 2015 Jun; 23(11):13833-47. PubMed ID: 26072755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-point separation in far-field super-resolution fluorescence microscopy based on two-color fluorescence dip spectroscopy, Part I: Experimental evaluation.
    Watanabe T; Iketaki Y; Omatsu T; Yamamoto K; Fujii M
    Appl Spectrosc; 2005 Jul; 59(7):868-72. PubMed ID: 16053556
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope.
    Otsu Y; Bormuth V; Wong J; Mathieu B; Dugué GP; Feltz A; Dieudonné S
    J Neurosci Methods; 2008 Aug; 173(2):259-70. PubMed ID: 18634822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
    Vaziri A; Shank CV
    Opt Express; 2010 Sep; 18(19):19645-55. PubMed ID: 20940859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain.
    Ouzounov DG; Wang T; Wang M; Feng DD; Horton NG; Cruz-Hernández JC; Cheng YT; Reimer J; Tolias AS; Nishimura N; Xu C
    Nat Methods; 2017 Apr; 14(4):388-390. PubMed ID: 28218900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments.
    Song W; Lee J; Kwon HS
    Opt Express; 2012 Aug; 20(18):20605-22. PubMed ID: 23037108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transparent, low-autofluorescence microECoG device for simultaneous Ca
    Zátonyi A; Madarász M; Szabó Á; Lőrincz T; Hodován R; Rózsa B; Fekete Z
    J Neural Eng; 2020 Feb; 17(1):016062. PubMed ID: 31822640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.