These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
670 related articles for article (PubMed ID: 27347935)
1. Site-Specific Genome Engineering in Human Pluripotent Stem Cells. Merkert S; Martin U Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347935 [TBL] [Abstract][Full Text] [Related]
2. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Kim EJ; Kang KH; Ju JH Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282 [TBL] [Abstract][Full Text] [Related]
4. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Eid A; Mahfouz MM Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224 [TBL] [Abstract][Full Text] [Related]
5. Retroviral Vectors for Cancer Gene Therapy. Schambach A; Morgan M Recent Results Cancer Res; 2016; 209():17-35. PubMed ID: 28101685 [TBL] [Abstract][Full Text] [Related]
6. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Chang CY; Ting HC; Su HL; Jeng JR Cell Transplant; 2018 Mar; 27(3):379-392. PubMed ID: 29806481 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
8. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
9. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro. Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041 [TBL] [Abstract][Full Text] [Related]
10. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Yang Y; Zhang X; Yi L; Hou Z; Chen J; Kou X; Zhao Y; Wang H; Sun XF; Jiang C; Wang Y; Gao S Stem Cells Transl Med; 2016 Jan; 5(1):8-19. PubMed ID: 26676643 [TBL] [Abstract][Full Text] [Related]
11. Delivery technologies for genome editing. Yin H; Kauffman KJ; Anderson DG Nat Rev Drug Discov; 2017 Jun; 16(6):387-399. PubMed ID: 28337020 [TBL] [Abstract][Full Text] [Related]
12. Genome Editing in Stem Cells for Disease Therapeutics. Song M; Ramakrishna S Mol Biotechnol; 2018 Apr; 60(4):329-338. PubMed ID: 29516417 [TBL] [Abstract][Full Text] [Related]
13. Non-viral delivery of genome-editing nucleases for gene therapy. Wang M; Glass ZA; Xu Q Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355 [TBL] [Abstract][Full Text] [Related]
14. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152 [TBL] [Abstract][Full Text] [Related]