These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 27347935)

  • 41. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
    Kime C; Mandegar MA; Srivastava D; Yamanaka S; Conklin BR; Rand TA
    Curr Protoc Hum Genet; 2016 Jan; 88():21.4.1-21.4.23. PubMed ID: 26724721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Editing in Human Pluripotent Stem Cells.
    Carlson-Stevermer J; Saha K
    Methods Mol Biol; 2017; 1590():165-174. PubMed ID: 28353269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.
    Morishige S; Mizuno S; Ozawa H; Nakamura T; Mazahery A; Nomura K; Seki R; Mouri F; Osaki K; Yamamura K; Okamura T; Nagafuji K
    Int J Hematol; 2020 Feb; 111(2):225-233. PubMed ID: 31664646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-Viral Delivery To Enable Genome Editing.
    Rui Y; Wilson DR; Green JJ
    Trends Biotechnol; 2019 Mar; 37(3):281-293. PubMed ID: 30278987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
    Hendriks WT; Jiang X; Daheron L; Cowan CA
    Curr Protoc Stem Cell Biol; 2015 Aug; 34():5B.3.1-5B.3.25. PubMed ID: 26237572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.
    Liu J; Shui SL
    J Control Release; 2016 Dec; 244(Pt A):83-97. PubMed ID: 27865852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.
    Brookhouser N; Raman S; Potts C; Brafman DA
    Cells; 2017 Feb; 6(1):. PubMed ID: 28178187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era.
    Park KE; Telugu BP
    Reprod Fertil Dev; 2013; 26(1):65-73. PubMed ID: 24305178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders.
    March OP; Reichelt J; Koller U
    Exp Physiol; 2018 Apr; 103(4):449-455. PubMed ID: 28271571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The emerging role of viral vectors as vehicles for DMD gene editing.
    Maggio I; Chen X; Gonçalves MA
    Genome Med; 2016 May; 8(1):59. PubMed ID: 27215286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [CRISPR/Cas system for genome editing in pluripotent stem cells].
    Vasil'eva EA; Melino D; Barlev NA
    Tsitologiia; 2015; 57(1):19-30. PubMed ID: 25872372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered Viruses as Genome Editing Devices.
    Chen X; Gonçalves MA
    Mol Ther; 2016 Mar; 24(3):447-57. PubMed ID: 26336974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From hacking the human genome to editing organs.
    Tobita T; Guzman-Lepe J; Collin de l'Hortet A
    Organogenesis; 2015; 11(4):173-82. PubMed ID: 26588350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification.
    Pu J; Frescas D; Zhang B; Feng J
    Exp Biol Med (Maywood); 2015 Aug; 240(8):1065-70. PubMed ID: 25956682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine.
    Lee K; Farrell K; Uh K
    Reprod Fertil Dev; 2019 Jan; 32(2):40-49. PubMed ID: 32188556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene editing of stem cells for kidney disease modelling and therapeutic intervention.
    Lau RW; Wang B; Ricardo SD
    Nephrology (Carlton); 2018 Nov; 23(11):981-990. PubMed ID: 29851168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.
    Hotta A; Yamanaka S
    Annu Rev Genet; 2015; 49():47-70. PubMed ID: 26407033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Yumlu S; Bashir S; Stumm J; Kühn R
    Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.