These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27348195)

  • 1. The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination.
    Tomlinson A; Drikas M; Brookes JD
    Water Res; 2016 Oct; 102():229-240. PubMed ID: 27348195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk.
    Huang R; Liu Z; Yan B; Zhang J; Liu D; Xu Y; Wang P; Cui F; Liu Z
    Environ Pollut; 2019 Feb; 245():63-70. PubMed ID: 30414550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.
    Goslan EH; Seigle C; Purcell D; Henderson R; Parsons SA; Jefferson B; Judd SJ
    Chemosphere; 2017 Mar; 170():1-9. PubMed ID: 27951445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination.
    Li X; Rao NRH; Linge KL; Joll CA; Khan S; Henderson RK
    Water Res; 2020 Sep; 183():116047. PubMed ID: 32622232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microseira wollei and Phormidium algae more than doubles DBP concentrations and calculated toxicity in drinking water.
    Aziz MT; Granger CO; Westerman DC; Putnam SP; Ferry JL; Richardson SD
    Water Res; 2022 Jun; 216():118316. PubMed ID: 35367941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of disinfection by-products during chlorination of organic matter from phoenix tree leaves and Chlorella vulgaris.
    Sun H; Song X; Ye T; Hu J; Hong H; Chen J; Lin H; Yu H
    Environ Pollut; 2018 Dec; 243(Pt B):1887-1893. PubMed ID: 30408877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia.
    Tian C; Liu R; Liu H; Qu J
    Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species--Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana.
    Liao X; Liu J; Yang M; Ma H; Yuan B; Huang CH
    Sci Total Environ; 2015 Nov; 532():540-7. PubMed ID: 26100733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation.
    He J; Wang F; Zhao T; Liu S; Chu W
    Water Res; 2020 Mar; 171():115368. PubMed ID: 31841956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review.
    Sharma VK; Zboril R; McDonald TJ
    J Environ Sci Health B; 2014; 49(3):212-28. PubMed ID: 24380621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disinfection by-product formation during seawater desalination: A review.
    Kim D; Amy GL; Karanfil T
    Water Res; 2015 Sep; 81():343-55. PubMed ID: 26099832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of different pre-oxidants on DBPs formation potential by chlorination and chloramination of Yangtze River raw water].
    Tian FX; Xu B; Rong R; Chen YY; Zhang TY; Zhu HZ
    Huan Jing Ke Xue; 2014 Feb; 35(2):605-10. PubMed ID: 24812954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of atmospheric particulate matter to the formation of CX
    Hou M; Chu W; Wang F; Deng Y; Gao N; Zhang D
    Water Res; 2018 Nov; 145():531-540. PubMed ID: 30195992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies.
    Qadafi M; Rosmalina RT; Pitoi MM; Wulan DR
    Chemosphere; 2023 Mar; 316():137817. PubMed ID: 36640978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking and analysis of DBP precursors' properties by fluorescence spectrometry of dissolved organic matter.
    Fan Z; Yang H; Li S; Yu X
    Chemosphere; 2020 Jan; 239():124790. PubMed ID: 31521927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation.
    Qi J; Lan H; Liu R; Miao S; Liu H; Qu J
    Water Res; 2016 Oct; 102():221-228. PubMed ID: 27348194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review.
    Mian HR; Hu G; Hewage K; Rodriguez MJ; Sadiq R
    Water Res; 2018 Dec; 147():112-131. PubMed ID: 30308371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.