BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27348423)

  • 1. Detection of Self Incompatibility Genotypes in Prunus africana: Characterization, Evolution and Spatial Analysis.
    Nantongo JS; Eilu G; Geburek T; Schueler S; Konrad H
    PLoS One; 2016; 11(6):e0155638. PubMed ID: 27348423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes.
    Akagi T; Henry IM; Morimoto T; Tao R
    Plant Cell Physiol; 2016 Jun; 57(6):1281-94. PubMed ID: 27081098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa).
    Kato S; Mukai Y
    Heredity (Edinb); 2004 Mar; 92(3):249-56. PubMed ID: 14710172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and
    Herrera S; Rodrigo J; Hormaza JI; Lora J
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Re-Sequencing of Diverse Sweet Cherry (Prunus avium) Individuals Reveals a Modifier Gene Mutation Conferring Pollen-Part Self-Compatibility.
    Ono K; Akagi T; Morimoto T; Wünsch A; Tao R
    Plant Cell Physiol; 2018 Jun; 59(6):1265-1275. PubMed ID: 29635538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype.
    Vaughan SP; Russell K; Sargent DJ; Tobutt KR
    Theor Appl Genet; 2006 Mar; 112(5):856-66. PubMed ID: 16365757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the S-locus in Prunus domestica, characterization, phylogeny and 3D modelling.
    Fernandez I Marti A; Castro S; DeJong TM; Dodd RS
    PLoS One; 2021; 16(5):e0251305. PubMed ID: 33983990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus.
    Aguiar B; Vieira J; Cunha AE; Fonseca NA; Iezzoni A; van Nocker S; Vieira CP
    PLoS One; 2015; 10(5):e0126138. PubMed ID: 25993016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system.
    Matsumoto D; Tao R
    Plant Mol Biol; 2016 Jul; 91(4-5):459-69. PubMed ID: 27071402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers.
    Sonneveld T; Tobutt KR; Robbins TP
    Theor Appl Genet; 2003 Oct; 107(6):1059-70. PubMed ID: 14523529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry ( Prunus avium L.).
    Wünsch A; Hormaza JI
    Theor Appl Genet; 2004 Jan; 108(2):299-305. PubMed ID: 12955210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites.
    Schueler S; Tusch A; Scholz F
    Mol Ecol; 2006 Oct; 15(11):3231-43. PubMed ID: 16968267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift.
    Stoeckel S; Klein EK; Oddou-Muratorio S; Musch B; Mariette S
    Evolution; 2012 Feb; 66(2):486-504. PubMed ID: 22276543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gametophytic self-incompatibility in Andean capuli (
    Gordillo-Romero M; Correa-Baus L; Baquero-Méndez V; Torres ML; Vintimilla C; Tobar J; Torres AF
    PeerJ; 2020; 8():e9597. PubMed ID: 32944417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Molecular Analysis of Putative Self-Incompatibility Ribonuclease Alleles in an Extreme Polyploid Species,
    Halász J; Molnár AB; Ilhan G; Ercisli S; Hegedűs A
    Front Plant Sci; 2021; 12():715414. PubMed ID: 34630463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele.
    Surbanovski N; Tobutt KR; Konstantinović M; Maksimović V; Sargent DJ; Stevanović V; Bosković RI
    Plant J; 2007 May; 50(4):723-34. PubMed ID: 17461794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems.
    Vieira J; Pimenta J; Gomes A; Laia J; Rocha S; Heitzler P; Vieira CP
    Sci Rep; 2021 Feb; 11(1):3710. PubMed ID: 33580108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus L.).
    Tsukamoto T; Potter D; Tao R; Vieira CP; Vieira J; Iezzoni AF
    J Exp Bot; 2008; 59(11):3169-85. PubMed ID: 18617504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes.
    Sutherland BG; Tobutt KR; Robbins TP
    Mol Genet Genomics; 2008 Jan; 279(1):95-106. PubMed ID: 17989997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus).
    Tsukamoto T; Hauck NR; Tao R; Jiang N; Iezzoni AF
    Plant Mol Biol; 2006 Oct; 62(3):371-83. PubMed ID: 16915517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.