These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27348697)

  • 41. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering.
    He B; Yuan X; Zhou A; Zhang H; Jiang D
    Expert Rev Mol Med; 2014 Aug; 16():e12. PubMed ID: 25089851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BMP7-Based Functionalized Self-Assembling Peptides for Nucleus Pulposus Tissue Engineering.
    Tao H; Wu Y; Li H; Wang C; Zhang Y; Li C; Wen T; Wang X; He Q; Wang D; Ruan D
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17076-87. PubMed ID: 26197234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly.
    Lin BF; Marullo RS; Robb MJ; Krogstad DV; Antoni P; Hawker CJ; Campos LM; Tirrell MV
    Nano Lett; 2011 Sep; 11(9):3946-50. PubMed ID: 21800917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amphiphilic peptide-polymer conjugates based on the coiled-coil helix bundle.
    Shu JY; Huang YJ; Tan C; Presley AD; Chang J; Xu T
    Biomacromolecules; 2010 Jun; 11(6):1443-52. PubMed ID: 20465287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.
    Hart LR; Li S; Sturgess C; Wildman R; Jones JR; Hayes W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3115-22. PubMed ID: 26766139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.
    Ozkizilcik A; Tuzlakoglu K
    J Tissue Eng Regen Med; 2014 Mar; 8(3):242-7. PubMed ID: 22499408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.
    Sun J; Jiang X; Lund R; Downing KH; Balsara NP; Zuckermann RN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3954-9. PubMed ID: 27035944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties.
    Samad MB; Chhonker YS; Contreras JI; McCarthy A; McClanahan MM; Murry DJ; Conda-Sheridan M
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28509362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly angiogenic peptide nanofibers.
    Kumar VA; Taylor NL; Shi S; Wang BK; Jalan AA; Kang MK; Wickremasinghe NC; Hartgerink JD
    ACS Nano; 2015 Jan; 9(1):860-8. PubMed ID: 25584521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Directing the self-assembly of supra-biomolecular nanotubes using entropic forces.
    Ruiz L; Keten S
    Soft Matter; 2014 Feb; 10(6):851-61. PubMed ID: 24652037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemistry of crosslinking processes for self-healing polymers.
    Billiet S; Hillewaere XK; Teixeira RF; Du Prez FE
    Macromol Rapid Commun; 2013 Feb; 34(4):290-309. PubMed ID: 23255325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Review paper: progress in the field of conducting polymers for tissue engineering applications.
    Bendrea AD; Cianga L; Cianga I
    J Biomater Appl; 2011 Jul; 26(1):3-84. PubMed ID: 21680608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles.
    Accardo A; Leone M; Tesauro D; Aufiero R; Bénarouche A; Cavalier JF; Longhi S; Carriere F; Rossi F
    Mol Biosyst; 2013 Jun; 9(6):1401-10. PubMed ID: 23483086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA-Functionalized Supramolecular Polymers: Dynamic Multicomponent Assemblies with Emergent Properties.
    Wijnands SPW; Meijer EW; Merkx M
    Bioconjug Chem; 2019 Jul; 30(7):1905-1914. PubMed ID: 30860819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.
    Loo Y; Goktas M; Tekinay AB; Guler MO; Hauser CA; Mitraki A
    Adv Healthc Mater; 2015 Nov; 4(16):2557-86. PubMed ID: 26461979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide-Oligonucleotide Hybrid Molecules for Bioactive Nanomaterials.
    Stephanopoulos N
    Bioconjug Chem; 2019 Jul; 30(7):1915-1922. PubMed ID: 31082220
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles.
    Yuan M; Zhong R; Yun X; Hou J; Du Q; Zhao G; Zhang F
    Luminescence; 2016 Feb; 31(1):47-53. PubMed ID: 25920412
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.
    Toyota T; Banno T; Nitta S; Takinoue M; Nomoto T; Natsume Y; Matsumura S; Fujinami M
    J Oleo Sci; 2014; 63(11):1085-98. PubMed ID: 25341502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
    Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X
    J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.