These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27348704)

  • 1. Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    Sci Total Environ; 2016 Nov; 569-570():395-403. PubMed ID: 27348704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    J Environ Manage; 2016 Jul; 177():177-91. PubMed ID: 27100330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative life cycle assessment of centralised and decentralised wood pellets production for residential heating.
    Quinteiro P; Greco F; da Cruz Tarelho LA; Righi S; Arroja L; Dias AC
    Sci Total Environ; 2020 Aug; 730():139162. PubMed ID: 32416511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions.
    Smyth CE; Smiley BP; Magnan M; Birdsey R; Dugan AJ; Olguin M; Mascorro VS; Kurz WA
    Carbon Balance Manag; 2018 Sep; 13(1):11. PubMed ID: 30187146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GHG displacement factors of harvested wood products: the myth of substitution.
    Leturcq P
    Sci Rep; 2020 Nov; 10(1):20752. PubMed ID: 33247216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.
    Haluza D; Kaiser A; Moshammer H; Flandorfer C; Kundi M; Neuberger M
    J Expo Sci Environ Epidemiol; 2012 Jul; 22(4):339-43. PubMed ID: 22569207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products Substitution in China.
    Geng A; Chen J; Yang H
    Environ Sci Technol; 2019 Feb; 53(3):1732-1740. PubMed ID: 30605609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland.
    Soimakallio S; Saikku L; Valsta L; Pingoud K
    Environ Sci Technol; 2016 May; 50(10):5127-34. PubMed ID: 27074531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?
    Keith H; Lindenmayer D; Macintosh A; Mackey B
    PLoS One; 2015; 10(10):e0139640. PubMed ID: 26436916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvested wood products and REDD+: looking beyond the forest border.
    Butarbutar T; Köhl M; Neupane PR
    Carbon Balance Manag; 2016 Dec; 11(1):4. PubMed ID: 27340426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of wood pellets and wood split logs for residential heating.
    Quinteiro P; Tarelho L; Marques P; Martín-Gamboa M; Freire F; Arroja L; Dias AC
    Sci Total Environ; 2019 Nov; 689():580-589. PubMed ID: 31279204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wood product carbon substitution benefits: a critical review of assumptions.
    Howard C; Dymond CC; Griess VC; Tolkien-Spurr D; van Kooten GC
    Carbon Balance Manag; 2021 Mar; 16(1):9. PubMed ID: 33786694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels.
    Seppälä J; Heinonen T; Pukkala T; Kilpeläinen A; Mattila T; Myllyviita T; Asikainen A; Peltola H
    J Environ Manage; 2019 Oct; 247():580-587. PubMed ID: 31260924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution impacts of Nordic wood-based multi-story building types: influence of the decarbonization of the energy sector and increased recycling of construction materials.
    Myllyviita T; Hurmekoski E; Kunttu J
    Carbon Balance Manag; 2022 May; 17(1):4. PubMed ID: 35581405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.
    Steubing B; Zah R; Ludwig C
    Environ Sci Technol; 2012 Jan; 46(1):164-71. PubMed ID: 22091634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A life cycle evaluation of wood pellet gasification for district heating in British Columbia.
    Pa A; Bi XT; Sokhansanj S
    Bioresour Technol; 2011 May; 102(10):6167-77. PubMed ID: 21377867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.