These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27348746)

  • 1. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.
    Kuzmin DA; Bychkov IV; Shavrov VG; Temnov VV
    Nano Lett; 2016 Jul; 16(7):4391-5. PubMed ID: 27348746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation.
    Chin JY; Steinle T; Wehlus T; Dregely D; Weiss T; Belotelov VI; Stritzker B; Giessen H
    Nat Commun; 2013; 4():1599. PubMed ID: 23511464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonically induced magnetic field in graphene-coated nanowires.
    Kuzmin DA; Bychkov IV; Shavrov VG; Temnov VV; Lee HI; Mok J
    Opt Lett; 2016 Jan; 41(2):396-9. PubMed ID: 26766723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.
    Tymchenko M; Nikitin AY; Martín-Moreno L
    ACS Nano; 2013 Nov; 7(11):9780-7. PubMed ID: 24079266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faraday Rotation of Dy
    Vojna D; Slezák O; Yasuhara R; Furuse H; Lucianetti A; Mocek T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-phonon-polariton modes and field enhancement in graphene-coated hexagon boron nitride nanowire pairs.
    Ye S; Wang Z; Sun C; Dong C; Wei B; Wu B; Jian S
    Opt Express; 2018 Sep; 26(18):23854-23867. PubMed ID: 30184881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A magnetic and magneto-optical investigation of Co-Pt alloy nanowire arrays.
    Zhang J; Shen TH; Jones GA; Jin Y; Wang H; Wang H
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1105-8. PubMed ID: 22629903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Faraday rotation angle of Ni nanowire arrays: its dependence on photon energy and nanowire size.
    Zhou B; Li X; Chen W; Zhang J; Qi K; Ma C; Shen TH; Xue D; Zhang H; Peng Y
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8561-7. PubMed ID: 22400225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation.
    Son C; Ju H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene.
    Poumirol JM; Liu PQ; Slipchenko TM; Nikitin AY; Martin-Moreno L; Faist J; Kuzmenko AB
    Nat Commun; 2017 Mar; 8():14626. PubMed ID: 28266509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation and analyzation of different surface plasmon modes on a suspended Ag nanowire.
    Wu Y; Lu L; Chen Y; Feng L; Qi X; Ren HL; Guo GC; Ren X
    Nanoscale; 2019 Nov; 11(46):22475-22481. PubMed ID: 31746908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modal properties of a cylindrical graphene-coated nanowire deposited on a hexagonal boron nitride substrate.
    Hajati M; Monfared YE
    Appl Opt; 2019 Aug; 58(24):6666-6671. PubMed ID: 31503598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals.
    Jain PK; Xiao Y; Walsworth R; Cohen AE
    Nano Lett; 2009 Apr; 9(4):1644-50. PubMed ID: 19351194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabry-Perot enhanced Faraday rotation in graphene.
    Ubrig N; Crassee I; Levallois J; Nedoliuk IO; Fromm F; Kaiser M; Seyller T; Kuzmenko AB
    Opt Express; 2013 Oct; 21(21):24736-41. PubMed ID: 24150317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-Plasmonic Switching Effect in the Graphene Nanostructures Containing Quantum Emitters.
    Gubin MY; Leksin AY; Shesterikov AV; Prokhorov AV; Volkov VS
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independently analyzing different surface plasmon polariton modes on silver nanowire.
    Liu A; Zou CL; Ren X; Xiong X; Cai YJ; Liu H; Sun FW; Guo GC; Guo GP
    Opt Express; 2014 Sep; 22(19):23372-8. PubMed ID: 25321806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability.
    Cao T; Tian L; Liang H; Qin KR
    Microsyst Nanoeng; 2018; 4():7. PubMed ID: 31057897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires.
    Liaw JW; Mao SY; Luo JY; Ku YC; Kuo MK
    Opt Express; 2021 Jun; 29(12):18876-18888. PubMed ID: 34154134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field.
    Liu JQ; Zhou YX; Li L; Wang P; Zayats AV
    Opt Express; 2015 May; 23(10):12524-32. PubMed ID: 26074507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.