These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27348807)

  • 1. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications.
    Cai J; Okamoto M; Atieno J; Sutton T; Li Y; Miklavcic SJ
    PLoS One; 2016; 11(6):e0157102. PubMed ID: 27348807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality.
    Ma D; Wang L; Zhang L; Song Z; U Rehman T; Jin J
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Screening to Examine the Dynamic of Stay-Green by an Imaging System.
    Padilla-Chacón D; Peña-Valdivia CB
    Methods Mol Biol; 2022; 2539():3-9. PubMed ID: 35895190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping.
    Berry JC; Fahlgren N; Pokorny AA; Bart RS; Veley KM
    PeerJ; 2018; 6():e5727. PubMed ID: 30310752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of high-throughput plant phenotyping to study nutrient use efficiency.
    Berger B; de Regt B; Tester M
    Methods Mol Biol; 2013; 953():277-90. PubMed ID: 23073890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for Characterization of Root Traits in Chickpea Germplasm for Legume Genomics and Breeding.
    Chen Y; Zhou T; Siddique KHM
    Methods Mol Biol; 2020; 2107():269-275. PubMed ID: 31893453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping.
    Atieno J; Li Y; Langridge P; Dowling K; Brien C; Berger B; Varshney RK; Sutton T
    Sci Rep; 2017 May; 7(1):1300. PubMed ID: 28465574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments.
    Valle B; Simonneau T; Boulord R; Sourd F; Frisson T; Ryckewaert M; Hamard P; Brichet N; Dauzat M; Christophe A
    Plant Methods; 2017; 13():98. PubMed ID: 29151844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.
    Lootens P; Ruttink T; Rohde A; Combes D; Barre P; Roldán-Ruiz I
    Plant Methods; 2016; 12():32. PubMed ID: 27293473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ColourQuant: A High-Throughput Technique to Extract and Quantify Color Phenotypes from Plant Images.
    Li M; Frank MH; Migicovsky Z
    Methods Mol Biol; 2022; 2539():77-85. PubMed ID: 35895198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping.
    Hassan MA; Yang M; Rasheed A; Tian X; Reynolds M; Xia X; Xiao Y; He Z
    Plant Physiol; 2021 Dec; 187(4):2623-2636. PubMed ID: 34601616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Image Analysis of Lipid-Droplet-Bound Mitochondria.
    Miller N; Wolf D; Alsabeeh N; Mahdaviani K; Segawa M; Liesa M; Shirihai OS
    Methods Mol Biol; 2021; 2276():285-303. PubMed ID: 34060050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.