These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 27349330)
1. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. Jia X; Zhang L; Luo Q; Lu H; Li X; Xie Z; Yang Y; Li YQ; Liu X; Ma CQ ACS Appl Mater Interfaces; 2016 Jul; 8(28):18410-7. PubMed ID: 27349330 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] as Electron Transport Layer. Han C; Cheng Y; Chen L; Qian L; Yang Z; Xue W; Zhang T; Yang Y; Cao W ACS Appl Mater Interfaces; 2016 Feb; 8(5):3301-7. PubMed ID: 26754052 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer. Zhang K; Zhong C; Liu S; Mu C; Li Z; Yan H; Huang F; Cao Y ACS Appl Mater Interfaces; 2014 Jul; 6(13):10429-35. PubMed ID: 24923366 [TBL] [Abstract][Full Text] [Related]
4. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells. Ambade RB; Ambade SB; Mane RS; Lee SH ACS Appl Mater Interfaces; 2015 Apr; 7(15):7951-60. PubMed ID: 25804557 [TBL] [Abstract][Full Text] [Related]
5. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers. Hu T; Li F; Yuan K; Chen Y ACS Appl Mater Interfaces; 2013 Jun; 5(12):5763-70. PubMed ID: 23738498 [TBL] [Abstract][Full Text] [Related]
6. Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells. Kim YR; Oh CM; Yoon CJ; Kim JH; Park K; Lee K; Hwang IW; Kim H Nanoscale; 2021 Mar; 13(11):5652-5659. PubMed ID: 33710224 [TBL] [Abstract][Full Text] [Related]
7. Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. Shao S; Zheng K; Pullerits T; Zhang F ACS Appl Mater Interfaces; 2013 Jan; 5(2):380-5. PubMed ID: 23272946 [TBL] [Abstract][Full Text] [Related]
8. Poly(N-vinylpyrrolidone)-decorated reduced graphene oxide with ZnO grown in situ as a cathode buffer layer for polymer solar cells. Hu T; Chen L; Yuan K; Chen Y Chemistry; 2014 Dec; 20(51):17178-84. PubMed ID: 25345881 [TBL] [Abstract][Full Text] [Related]
9. High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. Liu C; Wang K; Du P; Meng T; Yu X; Cheng SZ; Gong X ACS Appl Mater Interfaces; 2015 Jan; 7(2):1153-9. PubMed ID: 25513751 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Performance in Bulk Heterojunction Polymer Solar Cell Using Water Soluble Conjugated Polymer. Park KY; Lee JS; Namkung HS; Koo MS; Cho SJ; Yoon BW; Kim YM; Lee YS; Song SH; Park DK; Kim CG J Nanosci Nanotechnol; 2015 Feb; 15(2):1683-6. PubMed ID: 26353713 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer. Zheng D; Zhao L; Fan P; Ji R; Yu J Nanomaterials (Basel); 2017 Aug; 7(9):. PubMed ID: 28832508 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the Performance of Perovskite Solar Cells with ZnO-Covered PC Chang TC; Liao CY; Lee CT; Lee HY Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512335 [TBL] [Abstract][Full Text] [Related]
13. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. Liu X; Yu H; Yan L; Dong Q; Wan Q; Zhou Y; Song B; Li Y ACS Appl Mater Interfaces; 2015 Mar; 7(11):6230-7. PubMed ID: 25741994 [TBL] [Abstract][Full Text] [Related]
14. High-performance inverted solar cells based on blend films of ZnO Naoparticles and TiO(2) nanorods as a cathode buffer layer. Li P; Sun C; Jiu T; Wang G; Li J; Li X; Fang J ACS Appl Mater Interfaces; 2014 Mar; 6(6):4074-80. PubMed ID: 24606632 [TBL] [Abstract][Full Text] [Related]
15. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation. Zhang W; Xiong J; Jiang L; Wang J; Mei T; Wang X; Gu H; Daoud WA; Li J ACS Appl Mater Interfaces; 2017 Nov; 9(44):38467-38476. PubMed ID: 29027464 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells. Cai X; Yuan T; Liu X; Tu G ACS Appl Mater Interfaces; 2017 Oct; 9(41):36082-36089. PubMed ID: 28967247 [TBL] [Abstract][Full Text] [Related]
17. Boosted Electron Transport and Enlarged Built-In Potential by Eliminating the Interface Barrier in Organic Solar Cells. Liu C; Zhang D; Li Z; Zhang X; Guo W; Zhang L; Shen L; Ruan S; Long Y ACS Appl Mater Interfaces; 2017 Mar; 9(10):8830-8837. PubMed ID: 28233487 [TBL] [Abstract][Full Text] [Related]
18. Fluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devices. Chiou GC; Lin MW; Lai YL; Chang CK; Jiang JM; Su YW; Wei KH; Hsu YJ ACS Appl Mater Interfaces; 2017 Jan; 9(3):2232-2239. PubMed ID: 28004922 [TBL] [Abstract][Full Text] [Related]
19. Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells. Elumalai NK; Jin TM; Chellappan V; Jose R; Palaniswamy SK; Jayaraman S; Raut HK; Ramakrishna S ACS Appl Mater Interfaces; 2013 Oct; 5(19):9396-404. PubMed ID: 24028573 [TBL] [Abstract][Full Text] [Related]
20. High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer. Chang CY; Tsai BC; Hsiao YC; Huang YC; Tsao CS Phys Chem Chem Phys; 2016 Nov; 18(46):31836-31844. PubMed ID: 27841415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]