BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27349493)

  • 1. A comparison between dynamic implicit and explicit finite element simulations of the native knee joint.
    Naghibi Beidokhti H; Janssen D; Khoshgoftar M; Sprengers A; Perdahcioglu ES; Van den Boogaard T; Verdonschot N
    Med Eng Phys; 2016 Oct; 38(10):1123-30. PubMed ID: 27349493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis.
    Godest AC; Beaugonin M; Haug E; Taylor M; Gregson PJ
    J Biomech; 2002 Feb; 35(2):267-75. PubMed ID: 11784545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of knee and ankle joint during gait based on motion analysis.
    Park S; Lee S; Yoon J; Chae SW
    Med Eng Phys; 2019 Jan; 63():33-41. PubMed ID: 30482441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-insertional distance is a poor correlate for ligament load: analysis from in vivo gait kinetics data.
    Atarod M; Rosvold JM; Kazemi M; Li L; Frank CB; Shrive NG
    J Biomech; 2013 Sep; 46(13):2264-70. PubMed ID: 23871234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit finite element simulation of eccentric loading in total knee replacement.
    Taylor M; Barrett DS
    Clin Orthop Relat Res; 2003 Sep; (414):162-71. PubMed ID: 12966290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic finite element knee simulation for evaluation of knee replacement mechanics.
    Baldwin MA; Clary CW; Fitzpatrick CK; Deacy JS; Maletsky LP; Rullkoetter PJ
    J Biomech; 2012 Feb; 45(3):474-83. PubMed ID: 22209313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of the tibio-femoral response to finite element modeling parameters.
    Beillas P; Lee SW; Tashman S; Yang KH
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of the valgus knee joint of an obese child.
    Sun J; Yan S; Jiang Y; Wong DW; Zhang M; Zeng J; Zhang K
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):158. PubMed ID: 28155677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Computationally Efficient Lower Limb Finite Element Musculoskeletal Framework Directly Driven Solely by Inertial Measurement Unit Sensors.
    Wang S; Hase K; Ota S
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34897395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating knee replacement mechanics during ADL with PID-controlled dynamic finite element analysis.
    Fitzpatrick CK; Baldwin MA; Clary CW; Maletsky LP; Rullkoetter PJ
    Comput Methods Biomech Biomed Engin; 2014; 17(4):360-9. PubMed ID: 22687046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development and validation of a finite element model of human knee joint for dynamic analysis].
    Li H; Gu Y; Ruan S; Cui S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):97-101. PubMed ID: 22404016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method to investigate in vivo knee behavior using a finite element model of the lower limb.
    Beillas P; Papaioannou G; Tashman S; Yang KH
    J Biomech; 2004 Jul; 37(7):1019-30. PubMed ID: 15165872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges.
    Cooper RJ; Wilcox RK; Jones AC
    Med Eng Phys; 2019 Dec; 74():1-12. PubMed ID: 31492543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ReadySim: A computational framework for building explicit finite element musculoskeletal simulations directly from motion laboratory data.
    Hume DR; Rullkoetter PJ; Shelburne KB
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3396. PubMed ID: 32812382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.