These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 27349738)
1. Rising Out of the Ashes: Additive Genetic Variation for Crown and Collar Resistance to Hymenoscyphus fraxineus in Fraxinus excelsior. Muñoz F; Marçais B; Dufour J; Dowkiw A Phytopathology; 2016 Dec; 106(12):1535-1543. PubMed ID: 27349738 [TBL] [Abstract][Full Text] [Related]
2. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Stocks JJ; Buggs RJA; Lee SJ Sci Rep; 2017 Nov; 7(1):16546. PubMed ID: 29185457 [TBL] [Abstract][Full Text] [Related]
3. Virulence of Hymenoscyphus albidus and H. fraxineus on Fraxinus excelsior and F. pennsylvanica. Kowalski T; Bilański P; Holdenrieder O PLoS One; 2015; 10(10):e0141592. PubMed ID: 26517266 [TBL] [Abstract][Full Text] [Related]
4. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Cleary M; Nguyen D; Marčiulynienė D; Berlin A; Vasaitis R; Stenlid J Sci Rep; 2016 Feb; 6():21895. PubMed ID: 26900083 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional responses in developing lesions of European common ash (Fraxinus excelsior) reveal genes responding to infection by Hymenoscyphus fraxineus. Sahraei SE; Cleary M; Stenlid J; Brandström Durling M; Elfstrand M BMC Plant Biol; 2020 Oct; 20(1):455. PubMed ID: 33023496 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. Sollars ESA; Buggs RJA BMC Genomics; 2018 Jun; 19(1):502. PubMed ID: 29954338 [TBL] [Abstract][Full Text] [Related]
7. Genotypes of Fraxinus excelsior with different susceptibility to the ash dieback pathogen Hymenoscyphus pseudoalbidus and their response to the phytotoxin viridiol - a metabolomic and microscopic study. Cleary MR; Andersson PF; Broberg A; Elfstrand M; Daniel G; Stenlid J Phytochemistry; 2014 Jun; 102():115-25. PubMed ID: 24709032 [TBL] [Abstract][Full Text] [Related]
8. Effects of endophytic fungi on the ash dieback pathogen. Schlegel M; Dubach V; von Buol L; Sieber TN FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27364360 [TBL] [Abstract][Full Text] [Related]
9. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior. Nemesio-Gorriz M; Menezes RC; Paetz C; Hammerbacher A; Steenackers M; Schamp K; Höfte M; Svatoš A; Gershenzon J; Douglas GC J Exp Bot; 2020 Oct; 71(19):6074-6083. PubMed ID: 32598444 [TBL] [Abstract][Full Text] [Related]
10. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Gross A; Holdenrieder O; Pautasso M; Queloz V; Sieber TN Mol Plant Pathol; 2014 Jan; 15(1):5-21. PubMed ID: 24118686 [TBL] [Abstract][Full Text] [Related]
11. Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Klesse S; von Arx G; Gossner MM; Hug C; Rigling A; Queloz V Tree Physiol; 2021 May; 41(5):683-696. PubMed ID: 32705118 [TBL] [Abstract][Full Text] [Related]
12. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Fones HN; Mardon C; Gurr SJ Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963 [TBL] [Abstract][Full Text] [Related]
13. Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash ( Masi M; Di Lecce R; Tuzi A; Linaldeddu BT; Montecchio L; Maddau L; Evidente A J Agric Food Chem; 2019 Dec; 67(49):13617-13623. PubMed ID: 31661270 [TBL] [Abstract][Full Text] [Related]
14. Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Kosawang C; Amby DB; Bussaban B; McKinney LV; Xu J; Kjær ED; Collinge DB; Nielsen LR Fungal Biol; 2018; 122(2-3):110-120. PubMed ID: 29458714 [TBL] [Abstract][Full Text] [Related]
15. Genome sequence and genetic diversity of European ash trees. Sollars ES; Harper AL; Kelly LJ; Sambles CM; Ramirez-Gonzalez RH; Swarbreck D; Kaithakottil G; Cooper ED; Uauy C; Havlickova L; Worswick G; Studholme DJ; Zohren J; Salmon DL; Clavijo BJ; Li Y; He Z; Fellgett A; McKinney LV; Nielsen LR; Douglas GC; Kjær ED; Downie JA; Boshier D; Lee S; Clark J; Grant M; Bancroft I; Caccamo M; Buggs RJ Nature; 2017 Jan; 541(7636):212-216. PubMed ID: 28024298 [TBL] [Abstract][Full Text] [Related]
16. Strong antagonism of an endophyte of Demir Ö; Schulz B; Rabsch L; Steinert M; Surup F Appl Environ Microbiol; 2024 Jun; 90(6):e0066524. PubMed ID: 38814060 [TBL] [Abstract][Full Text] [Related]
17. Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.). Turczański K; Dyderski MK; Rutkowski P Sci Total Environ; 2021 Jan; 752():141787. PubMed ID: 32889266 [TBL] [Abstract][Full Text] [Related]
18. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics. Harper AL; McKinney LV; Nielsen LR; Havlickova L; Li Y; Trick M; Fraser F; Wang L; Fellgett A; Sollars ES; Janacek SH; Downie JA; Buggs RJ; Kjær ED; Bancroft I Sci Rep; 2016 Jan; 6():19335. PubMed ID: 26757823 [TBL] [Abstract][Full Text] [Related]
19. The £15 billion cost of ash dieback in Britain. Hill L; Jones G; Atkinson N; Hector A; Hemery G; Brown N Curr Biol; 2019 May; 29(9):R315-R316. PubMed ID: 31063720 [TBL] [Abstract][Full Text] [Related]
20. Fungal endophytes in Fraxinus excelsior petioles and their in vitro antagonistic potential against the ash dieback pathogen Hymenoscyphus fraxineus. Bilański P; Kowalski T Microbiol Res; 2022 Apr; 257():126961. PubMed ID: 35042053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]