These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 2734975)

  • 1. The design and fabrication of high frequency poly(vinylidene fluoride) transducers.
    Sherar MD; Foster FS
    Ultrason Imaging; 1989 Apr; 11(2):75-94. PubMed ID: 2734975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials.
    Snook KA; Zhao JZ; Alves CH; Cannata JM; Chen WH; Meyer RJ; Ritter TA; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Feb; 49(2):169-76. PubMed ID: 11887795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.
    Takahashi S; Ohigashi H
    Ultrasonics; 2009 May; 49(4-5):495-8. PubMed ID: 19215951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PZT-PVDF Stacked Transducer for Short-Pulse Ultrasound Therapy and Monitoring.
    Jiang Z; Dickinson RJ; Hall TL; Choi JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2164-2171. PubMed ID: 33591915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and analysis of MEMS based PVDF ultrasonic transducers for vascular imaging.
    Chandrana C; Talman J; Pan T; Roy S; Fleischman A
    Sensors (Basel); 2010; 10(9):8740-50. PubMed ID: 22163683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication techniques for improving the performance of PVDF-on-silicon ultrasonic transducer arrays.
    Kim HJ; Ziaie B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3491-4. PubMed ID: 17945781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.
    Lu Y; He C; Song G; Wu B; Chung CH; Lee YC
    Ultrasonics; 2014 Jan; 54(1):296-304. PubMed ID: 23899826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design considerations for piezoelectric polymer ultrasound transducers.
    Brown LF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1377-96. PubMed ID: 18238684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.
    Choi H; Shung KK
    Biomed Eng Online; 2014 Jun; 13():76. PubMed ID: 24924595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency response of PVDF needle-type hydrophones.
    Fay B; Ludwig G; Lankjaer C; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):361-6. PubMed ID: 8085292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging using a copolymer phased array.
    Goldberg RL; Smith SW; Brown LF
    Ultrason Imaging; 1992 Jul; 14(3):234-48. PubMed ID: 1448890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cylindrical PVDF film transmitters and receivers for air ultrasound.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):626-34. PubMed ID: 12046938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
    Merks EJ; Borsboom JM; Bom N; van der Steen AF; de Jong N
    Ultrasonics; 2006 Dec; 44 Suppl 1():e705-10. PubMed ID: 16875709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films.
    Bloomfield PE; Lo WJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.
    Liu C; Djuth F; Li X; Chen R; Zhou Q; Shung KK
    Ultrasonics; 2012 Apr; 52(4):497-502. PubMed ID: 22119324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements.
    Jadidian B; Hagh NM; Winder AA; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):368-78. PubMed ID: 19251524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and characteristics of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air.
    Takahashi S
    Ultrasonics; 2012 Mar; 52(3):422-6. PubMed ID: 22055342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of lead-free single-element ultrahigh frequency (170-320MHz) ultrasonic transducers.
    Lam KH; Ji HF; Zheng F; Ren W; Zhou Q; Shung KK
    Ultrasonics; 2013 Jul; 53(5):1033-8. PubMed ID: 23485349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.