These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 27349789)
1. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. Zhang Y; Dong R; Park Y; Bohner M; Zhang X; Ting K; Soo C; Wu BM Int J Pharm; 2016 Sep; 511(1):79-89. PubMed ID: 27349789 [TBL] [Abstract][Full Text] [Related]
2. Surface immobilization of MEPE peptide onto HA/β-TCP ceramic particles enhances bone regeneration and remodeling. Acharya B; Chun SY; Kim SY; Moon C; Shin HI; Park EK J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):841-9. PubMed ID: 22278974 [TBL] [Abstract][Full Text] [Related]
3. Chitosan-stablized bovine serum albumin nanoparticles having ability to control the release of NELL-1 protein. Li Y; Song H; Xiong S; Tian T; Liu T; Sun Y Int J Biol Macromol; 2018 Apr; 109():672-680. PubMed ID: 29288032 [TBL] [Abstract][Full Text] [Related]
4. Hollow calcium phosphate microcarriers for bone regeneration: in vitro osteoproduction and ex vivo mechanical assessment. Santoni BG; Pluhar GE; Motta T; Wheeler DL Biomed Mater Eng; 2007; 17(5):277-89. PubMed ID: 17851170 [TBL] [Abstract][Full Text] [Related]
5. Beta-tricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. Hu J; Hou Y; Park H; Lee M J Biomed Mater Res A; 2012 Jul; 100(7):1680-6. PubMed ID: 22447727 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of collagen/heparin coated TCP/HA granules for long-term delivery of BMP-2. Hannink G; Geutjes PJ; Daamen WF; Buma P J Mater Sci Mater Med; 2013 Feb; 24(2):325-32. PubMed ID: 23135410 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
9. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647 [TBL] [Abstract][Full Text] [Related]
10. Delivery of lyophilized Nell-1 in a rat spinal fusion model. Li W; Lee M; Whang J; Siu RK; Zhang X; Liu C; Wu BM; Wang JC; Ting K; Soo C Tissue Eng Part A; 2010 Sep; 16(9):2861-70. PubMed ID: 20528102 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. Harada Y; Wang JT; Doppalapudi VA; Willis AA; Jasty M; Harris WH; Nagase M; Goldring SR J Biomed Mater Res; 1996 May; 31(1):19-26. PubMed ID: 8731145 [TBL] [Abstract][Full Text] [Related]
12. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Lee M; Li W; Siu RK; Whang J; Zhang X; Soo C; Ting K; Wu BM Biomaterials; 2009 Oct; 30(30):6094-101. PubMed ID: 19674782 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Song H; Zhang Y; Zhang Z; Xiong S; Ma X; Li Y Int J Nanomedicine; 2021; 16():4321-4332. PubMed ID: 34211273 [TBL] [Abstract][Full Text] [Related]
15. Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. Kundu B; Lemos A; Soundrapandian C; Sen PS; Datta S; Ferreira JM; Basu D J Mater Sci Mater Med; 2010 Nov; 21(11):2955-69. PubMed ID: 20644982 [TBL] [Abstract][Full Text] [Related]
16. Chitosan fibers modified with HAp/β-TCP nanoparticles. Wawro D; Pighinelli L Int J Mol Sci; 2011; 12(11):7286-300. PubMed ID: 22174598 [TBL] [Abstract][Full Text] [Related]
17. Preparation and in vitro evaluation of mesoporous hydroxyapatite coated β-TCP porous scaffolds. Ye X; Cai S; Xu G; Dou Y; Hu H; Ye X Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5001-7. PubMed ID: 24094217 [TBL] [Abstract][Full Text] [Related]
18. Development of injectable chitosan/biphasic calcium phosphate bone cement and in vitro and in vivo evaluation. Rattanachan ST; Srakaew NL; Thaitalay P; Thongsri O; Dangviriyakul R; Srisuwan S; Suksaweang S; Widelitz RB; Chuong CM; Srithunyarat T; Kampa N; Kaenkangploo D; Hoisang S; Jittimanee S; Wipoosak P; Kamlangchai P; Yongvanit K; Tuchpramuk P Biomed Mater; 2020 Sep; 15(5):055038. PubMed ID: 32217815 [TBL] [Abstract][Full Text] [Related]
19. A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration. Vahabi S; Amirizadeh N; Shokrgozar MA; Mofeed R; Mashhadi A; Aghaloo M; Sharifi D; Jabbareh L Chang Gung Med J; 2012; 35(1):28-37. PubMed ID: 22483425 [TBL] [Abstract][Full Text] [Related]
20. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]