These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27349789)

  • 41. Controlled release by novel lysostaphin-loaded hydroxyapatite/chitosan composites.
    Wang JC; Xue B; Ge KK; Wang YH; Li GD; Huang QS
    Yao Xue Xue Bao; 2014 Sep; 49(9):1331-9. PubMed ID: 25518335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: in vivo study.
    Lee TM; Wang BC; Yang YC; Chang E; Yang CY
    J Biomed Mater Res; 2001 Jun; 55(3):360-7. PubMed ID: 11255189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration.
    He J; Hu X; Cao J; Zhang Y; Xiao J; Peng L; Chen D; Xiong C; Zhang L
    Carbohydr Polym; 2021 Feb; 253():117198. PubMed ID: 33278972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite.
    Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S
    Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineered porous scaffolds for periprosthetic infection prevention.
    Iviglia G; Cassinelli C; Bollati D; Baino F; Torre E; Morra M; Vitale-Brovarone C
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():701-715. PubMed ID: 27524071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro.
    Surmeneva MA; Kleinhans C; Vacun G; Kluger PJ; Schönhaar V; Müller M; Hein SB; Wittmar A; Ulbricht M; Prymak O; Oehr C; Surmenev RA
    Colloids Surf B Biointerfaces; 2015 Nov; 135():386-393. PubMed ID: 26277713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Behavior of Osteoblast-Like Cells on a β-Tricalcium Phosphate Synthetic Scaffold Coated With Calcium Phosphate and Magnesium.
    Park KD; Jung YS; Lee KK; Park HJ
    J Craniofac Surg; 2016 Jun; 27(4):898-903. PubMed ID: 27244203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications.
    Hou Y; Hu J; Park H; Lee M
    J Biomed Mater Res A; 2012 Apr; 100(4):939-47. PubMed ID: 22275184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid).
    Miao X; Tan DM; Li J; Xiao Y; Crawford R
    Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering.
    Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W
    Biomed Mater; 2019 Feb; 14(2):025013. PubMed ID: 30690438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites.
    Babaei Z; Jahanshahi M; Rabiee SM
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):370-5. PubMed ID: 25428083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds.
    Li J; Wang Q; Zhi W; Wang J; Feng B; Qu S; Mu Y; Weng J
    Biomed Mater; 2016 Oct; 11(5):055014. PubMed ID: 27716647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds.
    Zhao J; Shen G; Liu C; Wang S; Zhang W; Zhang X; Zhang X; Ye D; Wei J; Zhang Z; Jiang X
    Tissue Eng Part A; 2012 Jan; 18(1-2):185-97. PubMed ID: 21830854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.
    Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H
    Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Preparation of alpha-tricalcium phosphate/HA whisker/carboxymethyl chitosan-gelatin composite porous bone cement].
    Wei D; Zhang X; Gu J; Hu P; Yang W; Chen D; Zhou D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):491-5. PubMed ID: 22826946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.
    Bajpai I; Kim DY; Kyong-Jin J; Song IH; Kim S
    Biomed Res Int; 2016; 2016():9758729. PubMed ID: 27429988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formation in a rat model of femoral distraction osteogenesis.
    Yang JH; Kim HJ; Kim SE; Yun YP; Bae JH; Kim SJ; Choi KH; Song HR
    Cytotherapy; 2012 Mar; 14(3):315-26. PubMed ID: 22122301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Property and biological effects of the cuttlebone derived calcium phosphate particles, a potential bioactive bone substitute material.
    Tangsuksant T; Ummartyotin S; Pongprayoon T; Arpornmaeklong P; Apinyauppatham K
    J Biomed Mater Res B Appl Biomater; 2023 Jun; 111(6):1207-1223. PubMed ID: 36718607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications.
    Pinto RV; Gomes PS; Fernandes MH; Costa MEV; Almeida MM
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110557. PubMed ID: 32228952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.