These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27350002)

  • 1. Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress.
    Araki K; Kusano H; Sasaki N; Tanaka R; Hatta T; Fukui K; Natsume T
    J Proteome Res; 2016 Aug; 15(8):2548-59. PubMed ID: 27350002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Tambor V; Kondelova A; Bartek J; Hodny Z
    Redox Biol; 2019 Jun; 24():101227. PubMed ID: 31154163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unexplored role for Peroxiredoxin in exercise-induced redox signalling?
    Wadley AJ; Aldred S; Coles SJ
    Redox Biol; 2016 Aug; 8():51-8. PubMed ID: 26748042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells.
    Baty JW; Hampton MB; Winterbourn CC
    Biochem J; 2005 Aug; 389(Pt 3):785-95. PubMed ID: 15801906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia.
    Pan KT; Chen YY; Pu TH; Chao YS; Yang CY; Bomgarden RD; Rogers JC; Meng TC; Khoo KH
    Antioxid Redox Signal; 2014 Mar; 20(9):1365-81. PubMed ID: 24152285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Regulated Adaptation of Streptococcus oligofermentans to Hydrogen Peroxide Stress.
    Tong H; Dong Y; Wang X; Hu Q; Yang F; Yi M; Deng H; Dong X
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Analyses of Cysteine Redox in High-Fat-Fed and Fasted Mouse Livers: Implications for Liver Metabolic Homeostasis.
    Li Y; Luo Z; Wu X; Zhu J; Yu K; Jin Y; Zhang Z; Zhao S; Zhou L
    J Proteome Res; 2018 Jan; 17(1):129-140. PubMed ID: 29098862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma.
    Hoffman S; Nolin J; McMillan D; Wouters E; Janssen-Heininger Y; Reynaert N
    J Cell Biochem; 2015 Jun; 116(6):884-92. PubMed ID: 25565397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression.
    Prakash AS; Kabli AMF; Bulleid N; Burchmore R
    Anal Chem; 2018 Dec; 90(24):14173-14180. PubMed ID: 30452864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.