These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27350029)

  • 1. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice.
    Yang J; Gong W; Shi S; Du L; Sun J; Song S; Chen B; Zhang Z
    Sci Rep; 2016 Jun; 6():28787. PubMed ID: 27350029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice.
    Yang J; Du L; Gong W; Shi S; Sun J; Chen B
    PLoS One; 2018; 13(1):e0191068. PubMed ID: 29342190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra.
    Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S
    Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration.
    Yang J; Du L; Gong W; Shi S; Sun J; Chen B
    Opt Express; 2019 Feb; 27(4):3978-3990. PubMed ID: 30876021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.
    Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z
    Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum.
    Yang J; Du L; Cheng Y; Shi S; Xiang C; Sun J; Chen B
    Opt Express; 2020 Jun; 28(13):18728-18741. PubMed ID: 32672167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice.
    Yang J; Sun J; Du L; Chen B; Zhang Z; Shi S; Gong W
    Opt Express; 2017 Feb; 25(4):3743-3755. PubMed ID: 28241586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Laser Induced Fluorescence Spectrum Characteristics of Paddy under Nitrogen Stress].
    Yang J; Shi S; Gong W; Du L; Zhu B; Ma YY; Sun J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):537-40. PubMed ID: 27209764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice].
    Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of leaf nitrogen content from spectral characteristics of rice canopy.
    Yang CM
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus].
    Li YD; Ye C; Cao ZS; Sun BF; Shu SF; Huang JB; Tian YC; He Y
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3040-3050. PubMed ID: 33345505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Chlorophyll Concentration of Paddy Rice on the Fluorescence Spectrum.
    Yang J; Gong W; Shi S; Du L; Sun J; Song SL; Ma YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3410-3. PubMed ID: 30247001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating biophysical parameters of rice with remote sensing data using support vector machines.
    Yang X; Huang J; Wu Y; Wang J; Wang P; Wang X; Huete AR
    Sci China Life Sci; 2011 Mar; 54(3):272-81. PubMed ID: 21416328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysing the effect of paddy rice variety on fluorescence characteristics for nitrogen application monitoring.
    Shen C; Feng Z; Zhou D
    R Soc Open Sci; 2018 Jun; 5(6):180485. PubMed ID: 30110456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Apparatus for Crop-Growth Monitoring and Diagnosis.
    Ni J; Zhang J; Wu R; Pang F; Zhu Y
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30227614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative relationships between satellite channels-based spectral parameters and wheat canopy leaf nitrogen status].
    Yao X; Liu XJ; Tian YC; Cao WX; Zhu Y; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):431-7. PubMed ID: 23705388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat.
    Zhu H; Liu H; Xu Y; Guijun Y
    Appl Opt; 2018 Sep; 57(27):7722-7732. PubMed ID: 30462034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai.
    Zhao Z; Sha Z; Liu Y; Wu S; Zhang H; Li C; Zhao Q; Cao L
    Sci Total Environ; 2016 Oct; 566-567():1595-1603. PubMed ID: 27317135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative.
    Yang J; Du L; Gong W; Shi S; Sun J
    R Soc Open Sci; 2020 Feb; 7(2):191941. PubMed ID: 32257346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.