These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Arterial α2-Na+ pump expression influences blood pressure: lessons from novel, genetically engineered smooth muscle-specific α2 mice. Chen L; Song H; Wang Y; Lee JC; Kotlikoff MI; Pritchard TJ; Paul RJ; Zhang J; Blaustein MP Am J Physiol Heart Circ Physiol; 2015 Sep; 309(5):H958-68. PubMed ID: 26209057 [TBL] [Abstract][Full Text] [Related]
3. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na Blaustein MP Am J Physiol Heart Circ Physiol; 2017 Nov; 313(5):H919-H930. PubMed ID: 28733446 [TBL] [Abstract][Full Text] [Related]
4. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Blaustein MP; Leenen FH; Chen L; Golovina VA; Hamlyn JM; Pallone TL; Van Huysse JW; Zhang J; Wier WG Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1031-49. PubMed ID: 22058154 [TBL] [Abstract][Full Text] [Related]
5. ACTH-induced hypertension is dependent on the ouabain-binding site of the alpha2-Na+-K+-ATPase subunit. Lorenz JN; Loreaux EL; Dostanic-Larson I; Lasko V; Schnetzer JR; Paul RJ; Lingrel JB Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H273-80. PubMed ID: 18487447 [TBL] [Abstract][Full Text] [Related]
6. How does salt retention raise blood pressure? Blaustein MP; Zhang J; Chen L; Hamilton BP Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R514-23. PubMed ID: 16467498 [TBL] [Abstract][Full Text] [Related]
7. Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Blaustein MP; Hamlyn JM Biochim Biophys Acta; 2010 Dec; 1802(12):1219-29. PubMed ID: 20211726 [TBL] [Abstract][Full Text] [Related]
8. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na Blaustein MP Am J Physiol Cell Physiol; 2018 Jan; 314(1):C3-C26. PubMed ID: 28971835 [TBL] [Abstract][Full Text] [Related]
9. Hypertension from chronic central sodium chloride in mice is mediated by the ouabain-binding site on the Na,K-ATPase α₂-isoform. Van Huysse JW; Dostanic I; Lingrel JB; Hou X; Wu H Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H2147-53. PubMed ID: 21856907 [TBL] [Abstract][Full Text] [Related]
10. The alpha2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Dostanic I; Paul RJ; Lorenz JN; Theriault S; Van Huysse JW; Lingrel JB Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H477-85. PubMed ID: 15458945 [TBL] [Abstract][Full Text] [Related]
11. Enhanced pressor response to increased CSF sodium concentration and to central ANG I in heterozygous alpha2 Na+ -K+ -ATPase knockout mice. Hou X; Theriault SF; Dostanic-Larson I; Moseley AE; Lingrel JB; Wu H; Dean S; Van Huysse JW Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1427-38. PubMed ID: 19244589 [TBL] [Abstract][Full Text] [Related]
13. Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. Zhang J; Lee MY; Cavalli M; Chen L; Berra-Romani R; Balke CW; Bianchi G; Ferrari P; Hamlyn JM; Iwamoto T; Lingrel JB; Matteson DR; Wier WG; Blaustein MP J Physiol; 2005 Nov; 569(Pt 1):243-56. PubMed ID: 16166162 [TBL] [Abstract][Full Text] [Related]
14. DOCA-salt hypertension does not require the ouabain-sensitive binding site of the α2 Na,K-ATPase. Lorenz JN; Oshiro N; Loreaux EL; Lingrel JB Am J Hypertens; 2012 Apr; 25(4):421-9. PubMed ID: 22258333 [TBL] [Abstract][Full Text] [Related]
15. The ouabain-binding site of the α2 isoform of Na,K-ATPase plays a role in blood pressure regulation during pregnancy. Oshiro N; Dostanic-Larson I; Neumann JC; Lingrel JB Am J Hypertens; 2010 Dec; 23(12):1279-85. PubMed ID: 20940714 [TBL] [Abstract][Full Text] [Related]
16. Role of low ouabain-sensitive isoform of Na+-K+-ATPase in the regulation of basal tone and agonist-induced contractility in ovine pulmonary artery. Chanda D; Krishna AV; Gupta PK; Singh TU; Prakash VR; Sharma B; Joshi P; Mishra SK J Cardiovasc Pharmacol; 2008 Aug; 52(2):167-75. PubMed ID: 18670362 [TBL] [Abstract][Full Text] [Related]
17. Targeting Ouabain- and Adducin-dependent mechanisms of hypertension and cardiovascular remodeling as a novel pharmacological approach. Ferrari P; Ferrandi M; Valentini G; Manunta P; Bianchi G Med Hypotheses; 2007; 68(6):1307-14. PubMed ID: 17097240 [TBL] [Abstract][Full Text] [Related]
18. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Schoner W; Scheiner-Bobis G Am J Cardiovasc Drugs; 2007; 7(3):173-89. PubMed ID: 17610345 [TBL] [Abstract][Full Text] [Related]
19. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Schoner W; Scheiner-Bobis G Am J Physiol Cell Physiol; 2007 Aug; 293(2):C509-36. PubMed ID: 17494630 [TBL] [Abstract][Full Text] [Related]
20. Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Blaustein MP; Gottlieb SS; Hamlyn JM; Leenen FHH Am J Physiol Heart Circ Physiol; 2022 Dec; 323(6):H1281-H1295. PubMed ID: 36367691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]