These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 27350614)

  • 1. Requirement of the isocitrate lyase gene ICL1 for VPS41-mediated starvation response in Cryptococcus neoformans.
    Xu Z; Zhi Y; Dong J; Lin B; Ye D; Liu X
    J Microbiol; 2016 Jul; 54(7):487-91. PubMed ID: 27350614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans.
    Rude TH; Toffaletti DL; Cox GM; Perfect JR
    Infect Immun; 2002 Oct; 70(10):5684-94. PubMed ID: 12228298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arg1 from
    Desmarini D; Liu G; Jessen H; Bowring B; Connolly A; Crossett B; Djordjevic JT
    mBio; 2024 Jun; 15(6):e0060824. PubMed ID: 38742909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
    Lee IR; Chow EW; Morrow CA; Djordjevic JT; Fraser JA
    Genetics; 2011 Jun; 188(2):309-23. PubMed ID: 21441208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor Liv4 is required for growth and pathogenesis of Cryptococcus neoformans.
    Yi J; Sang J; Zhao J; Gao L; Yang Y; Yan L; Zhang C; Pan W; Wang G; Liao W
    FEMS Yeast Res; 2020 May; 20(3):. PubMed ID: 32391887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans.
    Moyrand F; Lafontaine I; Fontaine T; Janbon G
    Eukaryot Cell; 2008 Dec; 7(12):2069-77. PubMed ID: 18820075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans.
    Garcia-Santamarina S; Festa RA; Smith AD; Yu CH; Probst C; Ding C; Homer CM; Yin J; Noonan JP; Madhani H; Perfect JR; Thiele DJ
    Mol Microbiol; 2018 Jun; 108(5):473-494. PubMed ID: 29608794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans.
    Munshi MA; Gardin JM; Singh A; Luberto C; Rieger R; Bouklas T; Fries BC; Del Poeta M
    Cell Rep; 2018 Feb; 22(6):1392-1400. PubMed ID: 29425496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans.
    Hoffman HJ; McClelland EE
    Methods Mol Biol; 2024; 2775():269-275. PubMed ID: 38758324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A copper hyperaccumulation phenotype correlates with pathogenesis in Cryptococcus neoformans.
    Raja MR; Waterman SR; Qiu J; Bleher R; Williamson PR; O'Halloran TV
    Metallomics; 2013 Apr; 5(4):363-71. PubMed ID: 23511945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans.
    Jung KW; Yang DH; Maeng S; Lee KT; So YS; Hong J; Choi J; Byun HJ; Kim H; Bang S; Song MH; Lee JW; Kim MS; Kim SY; Ji JH; Park G; Kwon H; Cha S; Meyers GL; Wang LL; Jang J; Janbon G; Adedoyin G; Kim T; Averette AK; Heitman J; Cheong E; Lee YH; Lee YW; Bahn YS
    Nat Commun; 2015 Apr; 6():6757. PubMed ID: 25849373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen
    Hembach L; Bonin M; Gorzelanny C; Moerschbacher BM
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3551-3559. PubMed ID: 32015121
    [No Abstract]   [Full Text] [Related]  

  • 13. Glyoxylate cycle gene ICL1 is essential for the metabolic flexibility and virulence of Candida glabrata.
    Chew SY; Ho KL; Cheah YK; Ng TS; Sandai D; Brown AJP; Than LTL
    Sci Rep; 2019 Feb; 9(1):2843. PubMed ID: 30808979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hybrid RAVE complex plays V-ATPase-dependent and -independent pathobiological roles in Cryptococcus neoformans.
    Choi JT; Choi Y; Lee Y; Lee SH; Kang S; Lee KT; Bahn YS
    PLoS Pathog; 2023 Oct; 19(10):e1011721. PubMed ID: 37812645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The morphotype heterogeneity in Cryptococcus neoformans.
    Wang L; Lin X
    Curr Opin Microbiol; 2015 Aug; 26():60-4. PubMed ID: 26094087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes.
    Brandão FA; Derengowski LS; Albuquerque P; Nicola AM; Silva-Pereira I; Poças-Fonseca MJ
    Virulence; 2015; 6(6):618-30. PubMed ID: 26103530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure-function analysis of the Mpr1 metalloprotease determinants of activity during migration of fungal cells across the blood-brain barrier.
    Na Pombejra S; Jamklang M; Uhrig JP; Vu K; Gelli A
    PLoS One; 2018; 13(8):e0203020. PubMed ID: 30161190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in Cryptococcus neoformans.
    Farnoud AM; Mor V; Singh A; Del Poeta M
    FEBS Lett; 2014 Nov; 588(21):3932-8. PubMed ID: 25240197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair.
    O'Meara MJ; Rapala JR; Nichols CB; Alexandre AC; Billmyre RB; Steenwyk JL; Alspaugh JA; O'Meara TR
    PLoS Genet; 2024 Feb; 20(2):e1011158. PubMed ID: 38359090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Replicative Lifespan in Cryptococcus neoformans.
    Silva VKA; Oliveira NK; Fries BC
    Methods Mol Biol; 2024; 2775():375-384. PubMed ID: 38758331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.