These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27350935)

  • 1. Knowledge-oriented semantics modelling towards uncertainty reasoning.
    Mohammed AW; Xu Y; Liu M
    Springerplus; 2016; 5(1):706. PubMed ID: 27350935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
    El-Sappagh S; Elmogy M; Riad AM
    Artif Intell Med; 2015 Nov; 65(3):179-208. PubMed ID: 26303105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
    Kalet AM; Doctor JN; Gennari JH; Phillips MH
    Med Phys; 2017 Aug; 44(8):4350-4359. PubMed ID: 28500765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building a bioinformatics ontology using OIL.
    Stevens R; Goble C; Horrocks I; Bechhofer S
    IEEE Trans Inf Technol Biomed; 2002 Jun; 6(2):135-41. PubMed ID: 12075668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using type-2 fuzzy ontology to improve semantic interoperability for healthcare and diagnosis of depression.
    Ghorbani A; Davoodi F; Zamanifar K
    Artif Intell Med; 2023 Jan; 135():102452. PubMed ID: 36628789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mémoire: A framework for semantic interoperability of case-based reasoning systems in biology and medicine.
    Bichindaritz I
    Artif Intell Med; 2006 Feb; 36(2):177-92. PubMed ID: 16459063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing reasoning through reduction of vagueness using fuzzy OWL-2 for representation of breast cancer ontologies.
    Oyelade ON; Ezugwu AE; Adewuyi SA
    Neural Comput Appl; 2022; 34(4):3053-3078. PubMed ID: 34642549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching.
    Kiourtis A; Nifakos S; Mavrogiorgou A; Kyriazis D
    Int J Med Inform; 2019 Dec; 132():104002. PubMed ID: 31629311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.
    Marco-Ruiz L; Pedrinaci C; Maldonado JA; Panziera L; Chen R; Bellika JG
    J Biomed Inform; 2016 Aug; 62():243-64. PubMed ID: 27401856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard.
    El-Sappagh S; Ali F; Hendawi A; Jang JH; Kwak KS
    BMC Med Inform Decis Mak; 2019 May; 19(1):97. PubMed ID: 31077222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.
    Li X; Bilbao S; Martín-Wanton T; Bastos J; Rodriguez J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.
    Mohammed AW; Xu Y; Hu H; Agyemang B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TrhOnt: building an ontology to assist rehabilitation processes.
    Berges I; Antón D; Bermúdez J; Goñi A; Illarramendi A
    J Biomed Semantics; 2016 Oct; 7(1):60. PubMed ID: 27716359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.
    Lamy JB
    Artif Intell Med; 2017 Jul; 80():11-28. PubMed ID: 28818520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.
    Lezcano L; Sicilia MA; Rodríguez-Solano C
    J Biomed Inform; 2011 Apr; 44(2):343-53. PubMed ID: 21118725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Semantic Sensor Data: An Ontology Approach.
    Liu J; Li Y; Tian X; Sangaiah AK; Wang J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring ontology graph structures using OWL reasoning.
    Rodríguez-García MÁ; Hoehndorf R
    BMC Bioinformatics; 2018 Jan; 19(1):7. PubMed ID: 29304741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontology-based approach for in vivo human connectomics: the medial Brodmann area 6 case study.
    Moreau T; Gibaud B
    Front Neuroinform; 2015; 9():9. PubMed ID: 25914640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fuzzy expert system for diabetes decision support application.
    Lee CS; Wang MH
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):139-53. PubMed ID: 20501347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.